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k: If f(n) is any arithmetical function, then one says (cf. [1], p. 356)
that the function g(n) is a normal order for f(n) provided, for every pos-
itive ¢, the inequality

If(n) —g(n)] < eg(n)

holds for almost all numbers n, that is, for all »’s with the exception of
a set of zero density. From the Turan-Kubilius inequality (see, e.g., [2])
one infers that, for a large class of additive functions, one can find normal
orders which are non-decreasing. For example, if f(n)> 0 is strongly
additive, i.e.,

fn) = Y f(p)

pin

(where the letter p is restricted to prime numbers), and
Ay = Dfmp, By =(Yfmr)"
pP<N PN

then f(n) has a non-decreasing normal order A, provided By = o(4y)
and, for every positive ¢, the inequality |4, —Ay| <edy holds for
(1+0(1)) N numbers n < N.

These conditions do not form a set of necessary and sufficient condi-
tions, as, e.g., the function

f(n) = X'logp

violates the first of them but, nevertheless, it has a non-decreasing normal
order g(n) = logn (seé, e.g., [2], pP. 43). On the other hand, we shall show
later that, for a positive ¢, the function

f(n) = D log"*°p
pin

cannot have a non-decreasing normal order. This makes the following
conjecture plausible:
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If H(x) is positive and non-decreasing and

fln) = Y H(p)
pin
has a non-decreasing normal order, then one must have H(x) = O(log'**x)
for every positive . (P 923)

We are unable to settle this conjecture but we shall prove ( Theorem I)
that under these assumptions one has

H (z) = O(exp{aloglogz logloglogx}),

where a > 0 is arbitrary.
If we, however, make the additional restriction

(i) H(x)/logx is non-decreasing,
then we can prove this conjecture and even give an intrinsic character-
ization of those functions H (x) for which f(n) has a non-decreasing normal
order (Theorem II). From this characterization it follows that in the
statement of the conjecture one cannot remove the e.

2. We start with two simple lemmas.

LEMMA 1. Let f(n) be an arbitrary arithmetical function. Assume that
there exist two sets A and B of natural numbers, A of positive upper density
and B of positive lower density, and two mon-decreasing functions F(x)
and G(x) such that f(n) < F(n) for neA, and f(n) > G(n) for neB. If, for
every positive M, one can find a certain ¥ = 3(M) <1 and a set X of nat-
ural numbers of positive density such that F(Mz) < 3G (x) for xeX, then
f(n) cannot have a non-decreasing mormal order.

The assertion of the lemma remains true if we assume that A and B
have a positive lower density and X is infinite.

Proof. Assume that g(n) is a non-decreasing normal order for f(n)
and let

X, ={n: |[f(n)—g(n)| <eg(n)}.

Density of this set equals 1, and so ANX, is infinite and BNX, has
a positive lower density. Choose a sufficiently large aeANX,. There are
numbers m, and m, such that in the interval (a/m,, a) there is an element
b of BNnX,, and in the interval (b/m,, b) an element x of X. Putting M
=m,m,, we get x < b<a<< Mzx. Now g(b) < g(a) and thus

(L+e)7'@¢(d) < (1+e)7'f(D) < g(d) < g(a) < (1 —e)7'f(a) < (1 —&)"'F(a)
which implies
G(b) < (L+¢)(1—e)'F(a) < (L+e)(1— &) *F(Ma) < (1+¢)(1—e) " 0G(x)
< (L+¢)(1—e)719G () < G(b),

provided ¢ is sufficiently small, and this is a contradiction.
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- If A and B are of positive lower density and X is infinite, first choose

a sufficiently large x¢ X, then be BNX, lying in a certain interval (z, m,x)
and, finally, aeAnX, lying in the interval (b, m,b). Put M = m,m,
and proceed as above.

LEMMA 2. Let q(n) be the maximal prime divisor of the number n. Let
A ={n: q(n)<n’} and B = {n: q(n) > n°}, where ¢ is positive, and ¢
18 positive and less than 1. Then both sets A and B have a positive lower
density.

In fact, better results are known and can be found, e.g., in [3].

3. Now we can prove the following result:
THEOREM 1. Let H (x) be positive and mon-decreasing and assume that

fm) = D H(p)

pin

has a mon-decreasing normal order. Then, for every positive a, we have
H (z) = O(exp{aloglogzlogloglogx}).

Proof. Let A’ denote the subset of the set A, occurring in Lemma 2,
consisting of all numbers n of 4 which have at most (1 4 4)loglogn distinct
prime divisors, where 1 is a given positive number. By the Hardy-Rama-
nujan theorem (see [1], Theorem 431), the set A’ has a positive lower
density. We apply Lemma 1 to the sets A’ and B. We have

f(n) < (14 A4)loglogn H(n®) for meAd,
and
f(n) = H(n°) for meB.

By Lemma 1, we infer that there exists a number M such that, for
every ¢ <1 and all large x, we have

loglog(Mz)H (M*2®) > 9H (2°)

(here the factor 1+ A has been covered by ). This inequality leads now
directly to our assertion. Indeed, writingy = ¢fe, § = M °and X = (Mz)’,
we obtain

(1) H(BX")/H(X) < 9 'loglog X'.

Now let X be sufficiently large so that (1) is satisfied. Put 7, = X
and T,,, = BT}. Then

k
_H(T,,,) H(T,) . .
H(Ty,,) = H(T,) H(T,) H(T,)< H(X)?d LII loglog (T7").
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. j-1 : f—2 . .
Since T; = X"~ p'**++""" we obtain easily

loglog(T;}”) < jlogy +loglog(8X)—loge,
‘whence

k
H(T,,) < H(X)97* [ | (jlogy +loglog (8 X) —loge).
ji=1

Observe now that, for large j and for an arbitrary u > 0, we have

jlogy +loglog(BX) —loge < (1+ u)jlogy
and so, finally,
(2) H(Tpiy) < Co97*H (X) (1 + u) (loghy) &*

= C,exp{klogk +k(loglogy +log (1 + u) —logd)},
where C, and C, are appropriate constants. Note now that if U is a given
large number and

k > 1+ (loglog U —loglog (X)) /logy,
then U < T),,,, whence H(U) < H(T,,,), and now (2) implies our assertion.
We turn now to functions
f(m) = Y H(p)
pin

with H (x) non-negative and such that h(x) = H (x)/logx is non-decreasing.
In this case we can give a rather simple characterization of the functions
H(z) for which f(n) has a non-decreasing normal order.

THEOREM II. Assume that H(x) is mon-negative, non-decreasing and
satisfies - (i). Then f(n) has a mon-decreasing nmormal order if and only if
H(z) = logx- L(logx), where L(t) is slowly oscillating in the sense of Kara-
mata (i.e., L(2x)/L(x) tends to unity if x tends to infinity). This condition
18 equivalent to each of the following two:

(3) D H(p)p™ = (1+0(1)H (),
pP<zT
(4) lim A (x2) /h(x) = 1.

Proof. We show first that (3) and (4) are equivalent (under con-
dition (i)). If we assume (3), then we can write

(L+0(1) h(2)loga = D' (h(p)logp)/p

P<T

= ) (k(p)logp)/p+ D (h(p)logp)/p

p<Vz Vz<p<z
< $h(Va)logz+ O (h (V) +h(x)logz +O (h(z))
= (h(V2) 4 h(=))loga +0 (h(x))
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and this is possible only if
limh(l/a—c)/h(w) =1.

>

Thus (4) holds.
Conversely, if h(x) satisfies (i) and (4), then, for every positive e,
limh(2®)/h(x) = 1.

—>00

Thus
h(2)logz+0(h(x)) > Y’ (h(p)logp)/p

> D' (h(p)logp)/p > h(a*)((1—e)logz+0(1)),
zt<p<z
whence
limsup( Z (h(p)logp)/p)/h(m)logw <1
r—>00 p<z
and

limini( 2 (h(p)logp)/p)/h(w)logw >1—e¢.

This, obviously, proves (3).

It follows evidently from (4) that the function L(¢) = h(expt) is
slowly oscillating, and so (4) implies H(x) = logz-L(logz) with slowly
oscillating L(t).

Observe also that the function H (z) is itself non-decreasing and,
for every m, we have

f(n) = Y h(p)logp < h(n) D'logp < H(n).
pin rin
Now assume that (3) is satisfied. Then

D (H@) —f(n) = aH(@)— Y f(n)

n<e nET

= 2H (2)— D H(p)[a/p] = aH(a)—a D H(p)p~*+0(sH ()/loga)
pP<T PLT

= o{xH(w))—i—O(wH(:v)/logm) = o (xH (x)).

If now N,(x) is the number of » < ¢ with H(x)—f(n) > nH () (ob-
serve that H (x) —f(n) is always non-negative!), then we get N,(x) = o(x).
By virtue of

0 < H(n)—f(n) < H(z)—f(n),

we see that H (n) is a non-decreasing normal order for f(n). Finally, assume
that f(n) has a non-decreasing normal order. Fix positive ¢ 7 < 1/2
and put

4

A={n:qn)<n®} and B = {n:q(n)=>n'""}.
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Both sets A and B have, by Lemma 2, a positive lower density.
We get
f(n) = Zh(p)logp < h(n®)logn  for ned,
pin
and
f(n) = (1 —n)lognh(n'~") for neB.

Thus Lemma 1 implies that, for a certain M, the inequality
h(Ma*)[h(2'~") > $(1—n)

holds -for every & < 1 and sufficiently large x. Thus we obtain

h(a*) [h(x?) > h(2™) [R(2'7") > $(1—n)  for @ > my(n, 4, &),

whence
liminfh (2*¢) [k (2*?) = S(1 —7).
I—>00
But this must hold for any ¢ <1 and » > 0, and so we, finally,

arrive at
lim A (%) [h (2*?) = 1
which is equivalent to (3).
COROLLARY. If H (x) is non-negative, H (x)/logxz is non-decreasing and

fm) = D H(p)
pin
has a mon-decreasing mormal order, then H (x) = 0((logm)‘+‘) for every
positive e.
Proof. It suffices to observe that every function (x) satisfying (3)
satisfies also h(x) = O((logx)’) for every positive e.
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