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1. Introduction. Let S(G) denote the suitably defined Schwartz space
of a Lie group G. If G is nilpotent, then S(G) is defined as the usual Schwartz
space of R" [1]. Let §'(G) denote the space of tempered distributions on G.
We say that T e€S'(G) is a left S-multiplier on G if Tx¢@eS(G) whenever
¢ €S(G), and that T is a right S-multiplier if ¢ » Te S (G) whenever ¢ e S(G).
T is called an S-multiplier if it is both a left and a right S -multiplier.

It is known that TeS'(R" is an S - multiplier if, and only if, T and all its
derivatives are slowly increasing C® functions.

S-multipliers play an important role in the study of harmonic analysis
on nilpotent Lie groups [1].

S - multipliers on the Heisenberg groups were characterized in [1]. Our
main goal is to characterize left S - multipliers on the motion groups and to
provide explicit examples of right S-multipliers which fail to be left S -
multipliers on some classical Lie groups. Eymard asked for such examples of
If - multipliers on non-commutative locally compact groups [2]. A. M.
Mantero recently answered Eymard’s question for the Heisenberg group [3].
There is a strong structural similarity between our examples of Schwartz
multipliers and those of A. M. Mantero.

2. Preliminaries and notation. Let T denote the circle group. T may be
identified with the complex numbers of modulus 1. The motion group of the
plane is the semi-direct product M(2) = TxC where C denotes the additive
group of complex numbers. The multiplication law in M(2) is given by

(€2, z) (e, w) = (€C*P, 2+ w).

Let H, denote the 2n+1 dimensional Heisenberg group which consists of
elements (x, y, z), x, ye R", e R, with multiplication defined by

(x, 5, 2)(@, B, 7) =(x+a, y+ B, z+7+ (B, xD)
(Here, { , ) is the usual inner product on R") Let H* denote the Heisenberg
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group with compact center. The elements of H: are (x, y, €7), x, yeR", €T
with multiplication defined by

(x, y, €)(a, B, €7) = (x+a, y+B, €E+7+ &),
We denote by S(M(2)) the space of functions satisfying

sup(1-+[z/" %D"‘*"”z v

for all m,, m,, k > 0 where

<

M +tmy v
ox Loy

By S'(G) we denote the dual space of S(G) which consists of the tempered
distributions on G.

For TeS'(G) where G is an Abelian Lie group, we denote by T the
Fourier transform of T and by G the character group of G.

One notices that for a unimodular G we have (T*¢)(g) = ¥ (g) where

¥(9) = [@(gg) T(g')du(g’) and ¥ (9) = Y (g~ *). For the motion group and the
G

Heisenberg groups we have yeS iff feS. Thus T is a left S-multiplier on
these groups if Yy eS(G) whenever @eS(G). Similarly, T is a right S-
multiplier if 8¢ S(G) whenever @€ S(G) where

0(g9) = [T(g'9)2(g") du(g).
G

D"'l'"'Z w =

3. S-multipliers for M (2). The characterization of left S-multipliers
on the motion group is provided by

THeoReM 1. The tempered distribution TeS'(M(2) is a left S-
multiplier on M (2) if, and only if, T is an S-multiplier for TxC. Namely, T
and all its derivatives are C® slowly increasing functions on Z xC.

Proof. Suppose that T is an S-multiplier for TxC. Let e S(M(2))
and let  be defined by

Y@ = | o@9)T(g)dg', geM(2).

M(2)
Hence
(1.1) v, 2)= [ @(eC?, é*(e™™z+w) T(e°, wydu
M(2)
where g = (€%, z). For ¢*eT let ¢,eS(M(2)) be defined by
(1.2) Pa (€%, 2) = p(e™, —€*2).

Thus we have
Y(e®, 2) = (@ *T)(e™™, —e 2)
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where ¢, * T is the convolution in TxC. Consequently, ¥ (e, -)eS(C) for

each ¢®e T, implying, by the compactness of 7T, that sup|(1+]|z]?)¥ D™"'""2y|
TxC

< oo for all positive integers m,, m, and N.

" mymsy . . )
It remains to show that %D 1'"2. is rapidly decreasing for each n > 0.

For n =1, we have

—QD"'""'Zw(e"“, 2)
0
= | a‘iD”‘l""z O(Ee0, 24 w) T(e", w)d
M(2)
§ [ DMTI (@0 2y o) R, (iwe) T(e, w)d
M(2)
+ I Dml,m2+l¢(ei(a+0)’Z+ef“w)1m(iwei“) T(¢°, w)dp.
M(2)

" mymy, . .
It follows, therefore, that @D "2y is a sum of expressions of the form

Xk (eia’ zZ) = _f Px (ei(¢+0)’ z+eia W) Pk (eia’ W) T(ewa W)d[l
" M(2)

where ¢,eS(m(2)) and P, (e, -) is a polynomial in R,w and I,w for each
fixed €. Hence, arguing as in the case n = 0, we conclude that each term is
rapidly decreasing which verifies the “if” part of the theorem.

Suppose now that TeS'(M(2) is a left S-multiplier on M(2). Let
S (M (2)) = S(M(2)) consist of ¢ such that ¢(e”, ) is a radial function on C
for each e*e T. If peS” (M (2)), then ¢, (€%, z) = p(e™*, —z) for each €*eT.
Therefore, by (1.1) and (1.2), yeS(M(2)) where Y (e, z)=(p*xT)(e "™,
—e"@z) and ¢=*T is the commutative convolution in TxC. Because
YeS(M(2), where J(g)=v(g~"), we must have ¢@xTeS(M(2) (the
convolution in TxC). Hence T is a C* function on Z xC, and TpeS(Z x€)
for @eS”(M(2). One notices also that (D"'"?T)@peS(ZxO), for

9eS”(M(2) and m,, m, >0, which implies that D"'"2T is slowly
increasing. That completes the proof of the theorem.
S - multipliers for C may be lifted to M(2) as described in

TueoreM 2. Let TeS'(C) and P=1®TeS (M(2)). Then P is an S-
multiplier on M(2) if, and only if, T is an S-multiplier on C.

Proof. Suppose that TeS'(C) is an S-multiplier on C. Let
peS'(M(2) be defined as p(g) = p(¢g™") where p=1®T. We have j(e”, :
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= T(—e ™z) and by a direct computation we obtain
p(m, )= [T(—e e "™da, (m, NeZxC,
T
or

2n
p(m, ) =(=1)"e™™ [ T(r, &)™ d¢
0

where 4 = (r, 6) in polar coordinates. Since T is an S - multiplier on C, T and
all its derivatives are slowly increasing C® functions on, C. This implies that
P and all its derivatives (with respect to r and 6) are slowly increasing
functions on Z x C. It follows by Theorem 1 that P is a left S-multiplier on
M (2) and that P is a right S - multiplier. However, by Theorem 1, P is a left
S -multiplier on M(2) if, and only if, T is an S-multiplier on C. That
completes the proof. ‘

Remark 3. The simple characterization of left S-multipliers on M(2)
is mainly due to.the compactness of T For the Heisenberg groups the
characterization is more intricate [1]. The analogous of Theorem 1 is false
even for the three - dimensional Heisenberg group with compact center. (See
Remark 10,

Remark 4. The analogue of Theorem 1 for L, - multipliers on M(2) is
false. Actually, we have the following: Let Te S'(C) and P = 1®T Then P is

2n
an L,-multipier on M(2) if, and only if, sup j |T(r, 0))2dO < .
r o

Consequently, there exist L,-multipliers on M(2) which are not pseudo -
measures on TxC.

4. Right and left S-multipliers. In this section, we introduce right S -
multipliers on some Lie groups which fail to be left S-multipliers. We start
with the motion group. If 1® T, Te S’ (C), is a left S - multiplier on M(2) then,
by Theorem 2, 1®T is also a right S-multiplier. However, the converse is
false as described in '

THEOREM 5. Ler PeS'(C) such that P(r, 0) = g(r)h(6) where ge C™(R),
suppg < [a, b), a >0, and h is a 2n- periodic measure. Then T = 1®P is a
right S - multiplier on M (2). If h is not a C® function then T is not a left S -
multiplier.

Proof. Let peS(M(2)) and let y(g) = j' T(g'g)o(g9'g)dg’. We have
M(2)

V(e z2)= [ P(z+w) (e’ wdp.
- M(2)
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For ¢®e T let @, be defined by @y(z) = @(e'®, —z). Hence

2=

Y (e, 2) =y, (2 =2n)7" [(P*@y)(—e’z)db
0
where P @, is the convolution on C. Taking a Fourier transform, we obtain
2n
U1 =@2r)" [ P(e™ &) @oe™0E)do
(1)
2n
=g(M(2m)~" [ h(x—0) @o(r, x—6)do
0

2n
=g(Q2n)~" [ Gug (r, O)h(0')dO'
0

where ¢ = (r, x) denotes polar coordinates in C. A

Notice that for each 6'€[0, 2n) the function y, (r, @) = @,_¢(r, 8) is
smooth on C. It follows, therefore, that ¥, e S(C) implying that y, e S(C),
as required. By Theorem 2, T is a left S -multiplier if, and only if, his a C*®
2r - periodic function, and the proof is completed.

In particular, for h =, we obtain

CoROLLARY 6. Let ge C®(R) such that § is a C® function supported on
[a, b], a > 0. Let Pe C*(C) be defined by P(z) = g(Re(z)). Then T = 1QP is
a right S -multiplier which is not a left S-multiplier on M (2).

Let H, = R x R? be the three - dimensional Heisenberg group. We recall
that the non-trivial orbits in R? under the action of R are the lines
{(y, 2)e R?*: yeR}. Hence the functions of z only are the suitable “radial”
functions for H;. On the other hand a distribution of the form 1®UP,
PeS’'(R?), is neither a right nor a left S-multiplier H,.

However, we may state the following analogue of Theorem 5.

THEOREM 7. Let h, ge C*(R), Re S(R) such that suppg <[a, b], a>0
and h a compactly supported measure on R. Let TeS'(H,) where T(x, y, -)
= R(x)h(y)g(z). Then T is a right S-multiplier on H,. If h is not a C®
function then T is not a left S-multiplier. In particular, the C® function
T(x, y, ) = R(x)g(z) is a right S-multiplier which is not a left S-multiplier.

Proof. Let ¢eS(H,) and let Y (g9) = [T(g9'9) @(g')dg’. Let PeC>(R?)
be defined by P(y, z) = h®g(y, z). Hence, we have

V(x,y,2) = [Rx+a)[[[P+B, z+ay+ D e(x, B, )dBdi]dx.
R R2

Let ¢.(B, ) = (2, —B, —4), pcR. Then
Y(x,y,2)= [R(x+2)[(P* @) (—y, —z—2xy)]dx
R
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where P ¢, is the convolution in R2. One notices that if we have x(y, z)
= @(y, z+ay) for some fixed ae R, then 7(4;, A3) = @ (A, —aly), (42, A3)eR>.
Thus we have

Ui, A2, A3) = [[[R(x+a)e ™ dx] Plads — Ay, =) B2 (2, @y — A, —2s)da
R R

= [P(xd3—2y, —23) P23(2, 2d3— 45, —13)R(3,) € da
R

_ eiizillls R(ll)g(—ls) J‘i’z-i“ (0"'12’ 0, —13)e"”‘“3
).3 ’13

where

B2, &1, E) = [ 0(x, B, e "F1T 42 apas.

R2
Here exp(x) = e*. For each fe R the function

. . [(0+4 s
Ug(A1, A2, 43) = @23 (_A_z, 0, _)‘3)exp(10'11/)‘3)
3

is C* and rapidly decreasing in the strip {(4;, 4, 43)eR®: —b < 13 < —a).
It follows that iy € S(R®) and hence that Y e S(H,) proving that T is a right
S - multiplier on H,.

Suppose now that T is a left S-multiplier. Let ¢@eS(H,) where
@, B, 1) = 0,0, (2, B, 1), ¢,€S(R), ¢,eS(R?). Hence yeS(H,) where

x(x,y,2)= [ P(y+B, z+Bx+4) 9, (B, HdBdi: | R(x+2) @, (x)da.
RZ ' R

Since x(O0, -, -)eAS(Rz), it follows that P must be an S-multiplier on R2.

Consequently, P should be a C® function, a contradiction. Finally, the last

statement of the theorem is provided by h = é, which completes the proof.

Similarly we may prove the following for H%.

TueorReM 8. Let heC®(R), ReS(R) such that h is a compactly
supported measure on R. Let g be a trigonometric polynomial such that §(0)
=0. Let TeS'(H%) be defined by T(x, y, €%) = R(x)h(y)g(e*). Then T is a
right S - multiplier on H%. If h is not a C®-function then T is not a left S -
multiplier. In particular, the function T(x,y, €)= R(x)e* is a right S-
multiplier which is not a left S-multiplier on H%.

Remark 9. Theorems 5 and 7 have an obvious extension to all
Euclidean motion groups and to Heisenberg groups. By choosing K -times
differentiable functions h we provide O(1/||x||*) functions that are right S -
multipliers and fail to be left S -multipliers.
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Remark 10. For DeS(R?) and ¢eS(R? let D*x¢ denote the
“twisted convolution” induced by H%X on R? and defined by D=*xg(x, y)
= [ D(x+a, y+ B e” ¢(x, fp)dadp. Then D(x, y) = R(x) where ReS(R) is

anng-multiplier with respect to the “twisted convolution™ which fails to be
an S-multiplier on R2.

It follows therefore that D(x, y, ) = R(x)ée" is a right S - multiplier on
H% which is not an S -multiplier on R? x T, in contrast to Theorem 1 for the
motion group.
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