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1. Introduction. The application of the kernel function enables
us to define in a (4-dimensional) domain d the metric whose line element
has the length ds,(z),

: d*log K,
2 , = )
(1) o) = Z_ Trindom @, Loz = ==t
and which is invariant () with respect to PCT’s (pseudo-conformal trans-
formations). Further, this approach permits us to determine bounds
for the distortion of Euclidean measures in PCT’s. Here Ky (21, 295 Z,, Z,)
is the kernel function of the domain d (see [1]-[8]).

As it has been shown in [9] and [14], the generalization of these
methods enables us to give bounds for the distortion of invariant mea-
sures in the case of a special class of QPCT’s (quasi-pseudo-conformal
transformations), mapping a hypersphere onto a class of Reinhardt
circular domains.

There arises the question to determine bounds for the distortion
of the length (1) in the case of general one-to-one, differentiable trans-
formations with non-vanishing Jacobian, to be called QPCT’s .

Remark 1. While a PCT transforms an infinitesimal hypersphere
$ into a hyperellipsoid of a special type, a differentiable QPCT trans-
forms § into a general hyperellipsoid (see Remark p. 938 of [9]).

Since the names PCT and QPCT have been used already previously
and since our considerations are closely connected with the theory of
analytic funetions of several complex variables, we retain these names.

(*) This work was supported in part by National Science Foundation grant
GP 5797 at Stanford University.

() Here and in the following, invariant = invariant with respect to PCT’s.

(*) As a rule, small characters are used for symbols of sets belonging to the
original domain b, and capital characters are used for symbols of sets belonging ot
the transformed domain D = W (b).
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Remark 2. When considering the domains (2) d and ® = W (), we
often make analogous hypotheses or carry out similar considerations
in the case of both domains d and ®. To avoid repetition, we formulate
the assumptions and our considerations for the domain d. In paranthe-
ses (...) we include the symbols referring to the transformed domain
D = W(d). This means that the statement is valid if we replace small
characters by capital ones. For instance: a(2) is a circle of radius p(P)
means two statements: 1) a is a circle of radius g, and 2) 2 is a circle of
radius P.

In the following we shall assume that the QPCT W defined in a

(bounded and closed) domain D possesses the following property: the
Euclidean length L(p,, p,) between two arbitrary points py, pred, and
the Ruclidean length L(W(p,), W(p,)) between the transformed points,
satisfy the relation

(2) 0 < _1_ < L(W(P1)7 W(Pz)) < b

e L(pyy p2)

Remark 3. It would be more proper to call W an e-QPCT, but
for shortness we omit e.

Let du = (dw,, du,) at the point (z,,%,) be an (infinitesimal) (3)
vector tangent to the curve g'{p,(s), p,(s)}, 0 <s <s,, where p,(s),
x =1,2, are differentiable. Further, let W = {w;(2;,2,), ws(21, 22)},
where w, are differentiable in d. Then

2 2
a 1 a 1 s a 2 7 a 9 -
av = {[2 (—6;’” o)+ ms))]ds, [Z(—a";’ PL(5)+ 5 px(-ﬁ))]dS}

n=1 %=1

is the image W (du) of du. The problem is to find sufficient conditions
for », ® = W(b), and du so that (2) implies the inequality

1 asi(z,z, du, du)
(3) | R s L X L <e.
¢ S @7, 72,40, al)

Here z = (21, #,) 18 a point of D, Z its image in ®; dU is the image
of the vector du. In the case of one variable one easily obtains sufficient
conditions of this type. In this case (*)

(4) dsg(za zZ, du, du) = Ky (2, E)Idulz,
(5) ds%(Z,Z,dU,dT—]) :K@(Z,Z)IJUIZ.
(®) In the future the word ‘‘infinitesimal” will be omitted.

(%) If W = w(z), it is sufficient that Rew(z) and Imw(z) are differentiable
functions of  and y.
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Since we assume that
1 |du|
(6) — &

S Tro &€
e  |dU] ’

it is sufficient to determine conditions which imply the existence of
a constant ¢ such that

1 Ky(z, 2)
(7) <0\K®(Z,Z)\’

4 = Wi(z),

holds for zed. Since the kernel function K,(z,z) is an analytic non-van-
ishing function of z, z, for z¢d, inequality (7) holds for every transforma-
tion W and for points 2 and Z = W (z) which have some fixed distance,
say ¢, ¢ > 0, from the boundary. Further, from (2) follows: if the point
z has the distance o from the boundary, the corresponding point Z = W (z)
has at least the distance p/e from the boundary of ®. Hence (7) holds
for all points = of d which have a distance o> g,, g, > 0, from the bound-
ary. Consequently, it is sufficient to derive bounds for any sequence
of points z, such that L(z,,0) -0, for x=1,2,..., where o is a
boundary point. We shall formulate sufficient conditions for domains 9
and 9D, insuring inequality (7) for a sequence of points (°) 2z, — o and
Z, = W(z) — 0 = W(0), where 0edd, 00D, D = W (b).

At first we assume that the sequence of the points converges to
the boundary point o, while Z, = W (z,) converges to the point O, and
we assume that two cireles of radius o(P), ¢ > 0(P > 0), exist, the first
with the center on the interior normal, the second with the center on
the exterior normal, whose boundaries have only the point o (0) in
common with dd (09). Further we assume that the set {z.} ({Z,}) lies
in the angular domain

B Re(z, —2° B Re(Z,—Z°%
(8) Qc—[0<0<——0] (Qc—[0<0<‘TZx—_ZTI—])

where 2°(Z°) is the coordinate of o (0). In this case inequality (7) holds
for all points z,» =1,2,...

In fact, we can assume that the point o (0) is the origin and
that the interior normal is the positive axis Ren > 0 (ReN > 0).
If we set

(9) i =[|ln—p| < o]l and a = [|n+p| > o], o > 0, sufficiently small

(%) If the points 2z, — o, then by (2) the limit point O of Z,, = W (z,) is the image
of o, i.e., O = W (o).
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(see Fig. 1.1), then
- (10) jebea

and the point o will simultaneously belong to the boundaries of j, d and a.

We have
1 P 1
w(nta— g’ T = e (n-+7n+ |n|2/0)?

see [8], p. 37-38. From (10) it follows that

(12) K(n,n) = Ky(n,n) = K,(n, n).
Therefore,

1. _
(13) > Ky(n, n)

w(n+m)’ (L—|n*lo(n+n)* ~
1

> .
m(n+5)* (1+|n*/o(n+m))

Repeating the same consideration for D, we get

1 _
14 _ > K (N,
W F vy - el &)

= AT\2 ! 2 A E
(N+N)(L+|N[*/o(N+N))

Thus
(N+N)* A+ NP[o(N+N)f _ Ky(n, W)
(n+m)*  (L—[nf*fo(n+m)* ~ Ky(N,N)
(N+N)?(1—|NP[e(N +N))?
(n-+7)* (L+|nl*/e(n+7))’
If the set of points {n,} ({N,}),» =1,2,..., lies in the angular
domain £,, see (8), then

2¢|n,| < (n,+W) <2[n, (20|, < (N, 4N,) <2|V,).

(15)
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From (15) it follows that

NPA+e? Ky @) NP1
GnlF(l—e) T KN, )~ [nP(+ep

(8a)

|n| is the distance of the point » from ¢ and |N| is the distance of N
from 0. & is a positive quantity which goes to 0, for n — o (N — 0).

By (2)
(16) < 1w <elnl.

Thus

) AOte) Ky, m) _ e(1—e)?

c2(1—e)? = Kqo(N,N)  e2(1+4e)?

follows. (17) represents the desired bounds for [K,(n, 7)/Kg(N, N)] in
the neighborhood of the boundary point o.

We proceed now to the formulation of sufficient conditions for W,
o and 9, insuring that (2) implies (3) for all points zed—adb.

We assume that at every boundary point oedd (0edD) exists a nor-
mal and two circles of radius ¢, ¢ > 0, with the center at the interior
and exterior normal, respectively. The first circle lies inside of d (D),
the second outside of d (D). Here p is independent of the choice of the
boundary point.)

From (2) it follows that the domain 2, in d goes into a domain
lying in 2,,0 < ¢ < co. In this way one shows that in the case
of a transformation W (in the case of two real variables) (2)
implies (3).

The method indicated here can be generalized to the case of QPCT’s
W in the case of a real four-dimensional space. However, some additional
hypotheses about d, ® = W (d) and the vector field (du,, du,), (dU,, dU,))
as well as some additional considerations, are needed. The derivation
of the results uses the classification of the boundary points in the theory
of functions of two complex variables. See [2], [5], [6], [7], p. 7 ff. and 26.

In the present paper we discuss the above mentioned problem for
the case of QPCT’s W in the space of four real variables.

2. Bounds for the distortion of the invariant length of a vector
at an interior point of D. The derivation of our results is based
on the use of the well-known inequalities for the kernel funection K
and the invariant metric. Suppose a > d o j. Then by (30), p. 18
of [7], " s

(1) Ki(2,2) > Ky(2,2) > K,(2,%), (2,3%) = (21, %2} %1y %2),
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and by the formula line 8, p. 53, [6], p. 54 of [5], and (33), p. 141 of [8],

@ %2 400 3, au, dn) > asi (2, 7; du, d) >

> " as¥ (2, 2. du., du
K,(z, 2) K,(z, %) «\#) £, du, 49),

2

ds*(z, 2, du, du) = )

2
n=0 m=0

Tonl#, 2)dupdu,, du = (du,, du,).

We make the assumption that the domain d and D = W( ) are
bounded. Let us consider in d a point ¢ which has the distance o, o > 0,
from the boundary.

Thus we use as an interior domain of comparison j the hypersphere
of radius ¢'" with the center at ¢, and as an exterior domain of com-
parison the hypersphere with the center at ¢ but with radius ¢®, where
0® < oo is sufficiently large. By (5a), p. 22 of [5] and (34), p. 141 of
[8] if

b = [|z1]2+ |22 < 021,

then
(3) Ky(2, 2) a8
Ra ) =
A (0% —2,2,—2,3,)
and
3 —%,Z 3
Ty(z, %) = le Zzzgf Tyz(2,2) = a

3(0%—2,%,)

(02 —#12,—2,%,)"

If we choose the point ¢ as the origin, j = (|z,|2-+ |2.)* < 9(1)) and
@ = [|21]2+ |2,]* < 0®°] as interior and exterior domains of comparison,
respectively, then from (1)-(4) it follows that at the point ¢ = 2z = (2,, 2,)

2 2
(5) = Ky(2,2) 2 —
2 o®* ’ 2@’
oDV |duy|®  |dus|? oV [dua|® | |dus|®
(6) 3( 1)[ ek n 2 ]2ds§(z,2,du,dﬁ)>3( (2)[ o 2 ]
V)L oW o e®) L o® o®

Let us assume that the point ¢ lies on the interior normal to dd at
the boundary point o. If ¢ = W(¢), then according to (1.2) the (Eucli-
dean) distance do of C from 0D satisfies the inequality

(7) PO = 5, < e,



AN INVARIANT METRIC 73

Analogously, if it is possible to draw the hypersphere with the center
at C of radius P around the point €, then

(8) 6e = oM < ePO,
Therefore,

(9)

If we denote by ¢ (P®) the maximum of the distances of the points
of » (®) from the boundary, then the hypersphere

(10) =l 4 Jo—a| < o (12,—ZOP+ 12,20 < PO

can be used as an exterior doma,ln of comparison for d (D). Here
e ={, N (C = {29, ZM). (2), (4) and (9) it holds

6p@* @*

(11) 3 [HaU,+[dU*] = 3

[T *+ U]

0(1)6 pwe
, - a pot ) ) 0"
= dsy(Z,Z,dU, dU) 235‘5}?[@(]1[ +|dU,"]1 =3

Ape)°

[dT*+1dU,"].

From (6) and (11) it follows that

(12) e“em‘P“"’[|du1|2+[du2|2] dsy (2, %, du,, d)
o0 AU, *+|dU,* ]~ dsi(Z,Z,aU, dl)
oY |dey | -+
¢f (2)"’ @' | |dU, P +aU,)?
By (1.2)
P4 |du, P 1
13 2= =—>0.
= O anF T e

(12) and (13) yield bounds

¢ o ‘p@° dsi(z, z, du, ) 9(1)10 -

2,
14 = = > ’
(14) Q(l)“’ ds3(Z,Z,aU, dU) ~ g8 ,° p@*

Thus we see that for points ¢ lying in a subdomain d, inside of d
we obtain in (14) the bounds for the ratio (ds;/ds3). Consequently, to ob-
tain the desired results it is sufficient to derive corresponding bounds for
sets {1}, » =1, 2,..., of points which converge to a boundary point
of . In §§ 3-5 of this paper and in [10a] we discuss this problem.
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3. Bounds for ds,/dsy in the neighborhood of points of the third
order. In the present section we consider the distortion of the non-Eucli-
dean length of a vector at a point ¢, which lies in a neighborhood of
a boundary point of the third order.

We assume:

1. The points ¢ and C = W (e) lie in a neighborhood of the boundary
points o and O = W (o), respectively. o and O are the points of the third
order. See [7], p. 12 and 20, and [2].

2. The boundary b3 (B3 = W (b3)) of d (D = W (D)) has at the point
o (0) the tangential analytic plane, which lies outside d—o (®—0). Let
n, =0 (Ny; = 0) be the equation of the analytic tangential plane at
o (0) and 71, = 0 (N, = 0) of the perpendicular plane. n,, n, (N, N,)
are called coordinates normal at the point o (0).

3. We assume that

i _ 1
(1) ] = [ +7— "Q(—l)(lnﬂz“i— |no[%) > 0]
and
I | . g @) - (1)
(2) a = ["1+n1_g_(2)‘(['"'1| + [n,]?) > 0], 07 >0 >0,

are interior and exterior domains of comparison for d at o, respectively.
4. Analogously we assume that

(3) 3 = [N1+N1_ —(IN1[2+[N2|2) = 0]
and

(4) A= [N,+N,— ! (|24 |No2) > 0], PO >PpPO>y,

P®@
are interior and exterior domains of comparison for ® at O, respectively.

N,

(du)

\ n,

Fig. 3.1

Y
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5. The point (n,, ny) ((N,, N,)) lies in the cone

1 (”1*}*%1) ]
5 Qc = 0 < — < ]
) [ o = 2Pt )

.1 (N, +N)
(Q"‘ B [0 < 2(|N1|2+|N2|2)”2])’ o> 2.

6. The vectors (du,,du,) and (dU,, dU,) = W(du,, du,) satisfy the
condition C, namely,

du | < ¢l 0<e <1,¢, <¢
ld“1|2+ldu2|2\ 59 5 x 1y 01 59

(6) 0 <ef <
or

1 2 2 1 2
— —1) [du,|” = |du,|” = o —1) [du,[",
5

1

2
(7) 0 <o & IfUll - < 6.
AU |*+ |d U

TaEoREM 3.1. Let W be ¢ QPCT mapping the domain ® in 2,, 2,-space
onto the domain ® in Z,, Zy-space. 2z = Tp+Yry, Zp = Xp+i¥p. W is
continuous, in particular, if L(p,,p,) s the distance between two points
P, Paed, and L(P,,P,) is the distance between their images P, = W(px)
in D, there exists a constant e, such that (1.2) holds. Further we assume
that the hypotheses 1-6 hold and the constants o' (P’), ¢y are independent
of the choice of boundary point of d (D).

Let (duy, duy) be a vector in d at the point ¢ = (g, n,), s image
(AU, dU,) = W (du,, du,) lies at Ce®D. The above vectors satisfy the con-
ditions (6) and (7), respectively. If sy(n,7;du,dw) (ss(N, N; dU,dU))
is the non-Euclidean length of (duy, dus) ((dUl, aU,)) with respect to the
domain d (D), then there ewists a constant cy, such that

(8) 5 <_}_< Sb(”ﬂl; du,duz_ < g, = B,
3 so(N, N;dU, dU)

Proof. In accordance with (5.a), p. 22 of [5] (see also (4.22), p. 17
of [2])

) 2o’

@ B = e, ) — P — T
B 2P(1)2

(10) Ky(N; N)

3 T RPN, +N)— |V, P— NP
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and similar formulas hold for K, (Ky) with o (P") replaced by o® (P®),
resp. If ¢ = (ny, ny) and C = W(e) = (N,, N,), then by (2.1) and (2.2),
2

(11) 5 = Ky(n, 7)

1 w7, +n.n
2 (1) n 7 3 1___ 1791 2772
et [ o wmy+m,
2
= 1 Tyt n,7 3°
20@ (L ¢ 1 — Ny nznz]
T Q ( 1_]_ 1)[ 9(2) %1+731
We note that
3 (l)z—n 7 —3(pM—7
T, — (o 27l3) T — (o Tiy) My

— _ _ _ . _ _ ?
[9(1) (Mg +7y) —ny 7y —N, '"/2]2 ’ [Q(l) (M +7y) —ny 70 —n, 77'2]2

_ 3[oW(n,+m,)— n1]*]
= Lo (g +7y) — [y P — [0y T

By (2.2), |
3% [1 1w nem, ]3
2 (2) =
(12)  Fuin, 7, du, dz) = ot 1
9(1)3 (g +72;)? [1 o 1 00y +nyny ]
Y oV my4m,

X {(9(1)2_”'2%2) |, |*— (9(1)—ﬁ1)7@2du1dﬁ2—

— (0" —n,) 7o, di, du,+ (0™ (ny+70y) —ny y) |y}
> dsy (N, Ny, dity, du,)

39(1)[1_ ! ””_’ﬁ”ﬁzr
Q( ‘ (2
- 1 n 7y 4ni, |°
(2)3,” 7021 — 170y T W1y
Q ( l—l_nl) [ Q(z) Wzl—’—ﬁl ]

X {(9(2)2_ l'"lez) Idu1|2— (9(2)—;;1)”2 du,di,—

— (0% —ny) Tyt duy (0P (ny +70,) — [y [*) |duy %)

= hy(n, @, du, d7).

Since, by 5 and 6,

1 _ cy(n,+n
(13) L) < bl < g gt < EE
(14) oW = (ny+ )" < oW — [, < o,
\duy|? 1
(15) Okldullz —|—l|du Fooor Al < (5 —1) du
2 1
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e % ¢
(16) 100 —7,] < oW+ Vny [ + [ny* < ok (A7),
C
(17) |ng| < (J,}lez+ |%2|2)1/2 < ?z(nl—l_’ﬁl)J
39(2) [1 (2) (n1+n1):| ’du1|2
2 W2 [, % -
(18) 3 g7 + e+ 5 (ny+7,)) X

5
9(1)3(7’&1‘}‘—"’1)2 L— 01 (n,+mn,)
49( )

1 1/2 -
X €g(ny+7,) (‘*c— —1) ‘|“Q( )('”/1 +7,) (—2 )} = hy(ny, ny; duy, du,)
Cy

2
1

and
| m o _ T 2
) 3077 1— 1@ (N +7,) | |duy
(19)  hy(n, 7; du, d@) > e . .
3 = _
9(2) ("1"‘7@1)2 [1— m (n1+n1)]
1

2
+0® (n,+7,) (1 — 0—2 (n1+ﬁ1)) (1 —ci)}-
40

Analogous inequalities can be derived for dsa (N, Ny; dU,, dU,).
Therefore by (18), (19),

o®PO’[1— (ny4-7,) 4P TP [1— (N, -+ Ny) [APOPG, |du,|?

(20) E
oW PO1— (0, +7,) 40O T [1— (N, + Ny) APO L, |d T,
ds:(nh Mgy dity, du,)
" dsy(Ny, Ny; dU,, dU,)
0P’ [1—E(n, +70,) [4 0D P[1— (N, - Ny) [APO TG, | dus, |
o PO — (ny+7,) 40P F[1— (N, + N) [APOPL, [dT
where

G, = {9(1)2+02(”1+ﬁ1)(01_2_1)1/2(Q(1)+%C2(%1‘|‘7_11))‘|“
+ 9(1)(01_2_1)(n1 +ﬁ1)} (N1+1V1)2,

Ly = {P(2)2—Cg(N1+N1)2—02(01_2_1)1/2(N1+1v )(P(Z)+ 202(N1+N1))+

+P®(1—c}) (M, + Fy) [1 s
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Note. (L—¢c?) can be replaced by (1—¢;) since 1-¢; > 1.
Gy = (0@ —(ny+ 1) —ey (07 —1) (0, +7) (¥ ea(my+-70,) [2)) +
+ 0P (1 —cf) (m+7,) (L— €5 (m+-7,) [40P)} (N, 4N )%,
Ly = [PV ey (e 2 —1) (N1 4 Ny) (PY e, (N, + 1) [2) +
+PO(e7—1) (N4 Ny)} (ny+7,)°.

By (1.2)
|7 |24 |n4)? 1
21 —— B —
i Z NN
by (5)
(751‘1“%1)2 4 (N1+N— )2 4
22 4>———>—, 4= .
(22) 14+ 0o T € [N, NP7
Therefore,
(23)
. ("”'1"‘ﬁ1)2 _ (ln’l—i'“f’—bl)z |n1|2+|"2|2 4(‘N112+|Nzl2) > 1
T (-Nl_}_Nl)z 4([%1[2—!— ’”2[2) |N1|2+ |Nz|2 (1\714‘2\71)2 - 0232 .
Thus for (n,+%,) — 0 follows
(24) (N,+N,) — 0.
By (1.2)
|duy |* 4 | du,|*
25 < .
( O) 2 |dU1| —l—IdU | 2 &2 Z 00

From (20), (23), (24) and (25) follows that for sufficiently small
(n,+7,) the right and the left-hand side of (20) converges to ¢; and 1/c;,
¢; < oo, respectively. This proves inequality (8).

4. Bounds for ds,/dsy in the neighborhood of points of the fourth
order. In the present and in the next sections we shall consider QPCT’S
W of a domaan b which is bounded by two analytic hypersurfaces 11, i

B(b) == t1 v 12, f2 = %1 A 12 is the distingnished boundary of b. We
assume that D, = d(d) and f* are homeomorphic to the bicylinder
(18] <1, [&] < 1], to ([|14:] <1, &) =1] v [|&] =1, 14| <1]) and to
the surface [|£;]| =1, |&,] = 1], respectively. D= WD), D= (D) =W (d*,
&* — W () have the same topological structures as d,0° and %, resp.:

(1) D = ?V 33; 33 = W(ik)7

where fik, k=1,2,..., are segments of analytle hypersurfaces. In this
section we shall cons1der a point o (0) of i (3?).
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We assume that

ii:tﬁ)i;‘;(ftk), b=1,2,
0

where i2(i) are segments of analytic surfaces (fs;"c = ] 5:9&(/%))-

o
Let
(2) — B AR (0 =32 ~ I )

where if(A2) (3%(A), &k =1,2,is a segment of the surface &, = Iy (%, A7)
and 2, = hy(2,, A3) (Z — H,(Z,, 2% and Z,— H o(Z4, 12) respectively.
Here Ty (23_ry Az) (Hz( (Zy_1es %)) are analytic functions of Z;_; (Zs_z) which
are regular in a sufficiently large domain. We assume that the mapping

(3) t=[2 =2,—h(3, 2y 2y = 2a—hy(21, A3)]
is one-to-one and analytic in D. Analogously,

(4) = (2, = 2,—H,(%2, %), Zy = Zy—H,(Zy, )]

~

is assumed to be one-to-one and analytic in D.

By (3) and (4) the domain D (53) will be transformed into the domain
d (D), the segments ii(Al) (fs,i(l,‘i)),k =1, 2, into the segments i}(A%)
of z; = 0 and 2z, = 0 (3;(4z) of Z; = 0 and Z, = 0), respectively. Since (3)
and (4) are PG’_I_"S, the invariant lengths remain unchanged. Instead of

the domains d and ® we shall consider the domains d and D, respectively.
The boundary d* has at the point o two tangential a,nalytle planes.
The coordinate system #,, n,, where n;, = 0 and n, = 0 are these tan-
gential planes, is called normal with respect to the point o.
In an analogous manner we introduce in ® coordinates N,, N,

which are normal with respect to the boundary point O of D. Obviously,
oef? (0.

3a. We make the assumption that
(5) jcdca

where ; and a are domains which one obtains by PCT ¢! (inverse to t)
from

(6) 3= [ (n+7)— " >0, V(ny+7,)—In,/* > 0], oM >0,

(1) a= [ +7)+ |n) > 0, 0P (n,+7,)+ no> > 0], 0P >0

respectively.
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4a. Analogously, we make the assumption that
(8) §cDcd,

where :"S and 2 are domains which one obtains by PCTT ' (inverse to
T) from

9) I =[PYN,+N,)—|N,]*>0, PO(N,+N,)— | N, > 0], PO =0,
and-
(10) A=[PH(N,+N,)+ |N,*>0, PO(N,+N;)+ [N >0], PP>0.

ba. The point ¢ = (n,, n,) (C = (N,, N,)) lies in the cone (3.5)

6a. The vectors (du,, du,) ((dU,, dU,)) satisfy conditions (3.6) and
{3.:7):

In addition to the hypotheses 3a, 4a, ba and 6a we shall assume
that the point ¢ = (n,, n,) (€ = (N,, N,)) lies in the domain

11) 0<—<

1 7 1  Ni+N
MR g ( <’“—++’-‘~<1, k=1,2.

= =
€ 2|y Cq 2| Nl
Almn, ﬂ\ 1mn,
Q
1 -Qz
n,- plane n,-p:ane
Fig. 4.1

Further we assume that

C2(ny+7) < (Na+7,) < e6(ny+74), cs =1,

B F) SN+ <eN 4R, o <1

Remark. It should be noted that condition (12) can be replaced by
(12%) 1 || < |ma| < g ny.

From (11) follows that
(12%%) gl > T, el

2 Cq
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Therefore from (12*) it follows cz(ny+7y) e, < my+7, and No—+Tiy
< g 0y (ny+704).

(12*) means that the point (n,, n,) approaches to the point o in the
product of two angular domains.

TureoreM 4.1. Let W be a QPOT of the domain d onto D. b is bounded
by two segments of analytic hypersurfaces i,k =1,2, and possesses the

distinguished surface f*; D = W(S) is again a domain bounded by two
segments of analytic hypersurfaces I} = W(f,i) and possesses the distin-
quished boundary & = W(}z). We assume that relation (1.2) holds for
L(pyy p2)[L(Pyy Py), Py, = W(pyg). Let W, = TWt and let the hypotheses
on p. 79 and 80 hold.

Let ocf* and 0eF*. Further let W, transform the vector (duy, dus)
at the point ¢ into the vector (AU, dU,) at the point 0 = W,(¢), and we
assume that ¢ lies in a neighborhood of o (C in a neighborhood of 0).

If sy(n, 7 du, dw) is the non-Buclidean length (°) with respect to d of
the wector (du,, du,) and so(N,N;dU,dU) with respect to D of the
transformed veclor, the ratios of s, and Sp satisfy inequality (3.8), in this
case ¢z is gwen in (24).

Proof. By (4), p. 21 of [5] it holds

4
9(1)

(13) Ifi(wﬂ n) =

“21!_71 L™ (n+7g) — |y TP

and a similar expression for K ,(n, @), with o replaced by o®. Analogous
expressions hold for Kg4(N,N) and Ky(N, N), where o® has to be
replaced by P®, k=1, 2.

By (7) and (2.1)

1
(14) 3 T S
= [ [ etm)? 1 — — 2F
g(?lkTilk) [ Q(l)(’nk—l—ﬁk)]
. _ 1
= Ky(n,n) > 2 PE 5
2 — \2 k
i g it [H_ 9‘2’(nk+ﬁk)]

(®) Since the mappings ¢ and 7' are PCT’s, the non-Fuclidean lengths of the

vectors are preserved in these transformations when passing from b to d (25 to D).
The PCT ¢ (7') preserves relation (1.2) but the value of ¢ can change. See Lemma 2,
p. 34 of [10a].

Colloquium Mathematicum XVTI. 6
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{ |dug|?
2 2 2 2 2
ﬂ._ k=1 = 2[1_ ~_“&_:I ]
k:l[l_ 9“’(nk+ﬁk)] e oD (n+721)
2 2
[ 7| i’
2”[1— Q—(ﬁ(nk""ﬁk)] 4

[1 n [ ]2
i 9(2) (N +70r:)

2

|d%!c]2
: k=1 (zn _.i_ﬁ )2 1+ __J_,’/L—klz___:lz
mrE o® (ny,+7ig,)

Similar inequalities hold for dsj(N, N,dU, dU).
From (11) it follows that

;h,(n,ﬁ,du,dﬂ).

_ 2 9
Ng—+ng | 1| Cy _
< < — (mp+-7)

16 <

(We note that 1(n;-+7) = Re(ng) > 0.) Therefore by (12)
(17)

- ci(np+7) 1P
2 [][1+ #] [y *-+ ]

= 27: (n, n,du, dz)
127 1# ci(/rbk_‘—ﬁk) 202(,"/ _I_-ﬁ )2 1_ cicﬁ(nl+ﬁ1)]2 ’ ’ ’ ’ ’
] 49(1) A 1 49(1)
(18)

hy(n, =, du, du) = — — 2 —
aN | e 2 — \2 1 e L | Sy
g[l"‘_ 49(2) ] 06(%1+n1) [ —I_ 49(2)

One obtaing similar bounds for H,(N,N,dU,dU) and H(N, N,
U, dl). Thus

Gyl |+ [du,|*] __dss(n, @, du, du) Galldu, [ +]dusl"]
Lo[[dU, P+ [dU.] ~ dsy(N, N,dU,dU) ~ L,[|dU,*+1aU,/*]

(19)
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where
2 " _
- (nx+7g) \?
Gy = N+ N | I[(1+L—) Y
3 6 1 1) Il 49(2) ‘
Ci(Nk‘{‘Nk) : 0206(N1+N1) :
1+ SO oo BB,

2

2 vy 2
Ly = 03("’/1“]‘%1)2”[(1— %k—)) X

k=1
Gi(Nk+ﬁk))2] (1_ 0206(n1+ﬁ1) )2

A (1 o 4pM) 400

2

6=+ | [(1— W"—)) X

! 49(1)
ci(Nk‘l’Nk) )2] ( ‘3:06("1‘1‘%1 ))2
><(1— ——] |- 2 1A
4pP" 4pP"
2 2 o
c 4 2
z, = dn+a? [ | [(1+ ——4(3"9(2,'”"’)--) X
k=1
¢3(Ny+Ni) \? ciee(ny+7,)\*
X(l+ "o )](1+ 1™ )

From (11) and (12+**) it follows that

@ S Ymt <Y tnr <t Y mp, Y=Y,
4 k=1

and since L(o, ¢) = (Z|m[*)'?, L(0, €) = (XN3)P

1 2 |my)? 2 (g ~+-7)* 03 % |ny|? 2 9
21 < £ - = < <Leé
(21) G " GZINE S NN S DN S 4

By (12)
(22) (1+02) (m~+7,)* < Z(m+7)° < (1+c2) (0, +77,)°
<

(A+e) (N, +N)* < Z(N Ny < (1 +¢§) (N, +Ny)).
Thus
1 (L+eg) (ny+m)*  (14e2) (n,+7,)° 2 2
2.2 < 2 AT \2 ! 2 AT \2 ‘<~C46
Cy€ (1+¢7) (N1 +N,) (1+¢5)(N,+N))
or
2 — \2 2\ 2 2
(23) (14-¢3) < (n,+n,) < (1+-c5)cze

cie’(14c5) (NN = (1+é)
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For a sufficiently small (n,+%,) we have

(24)

(1+e) (1 +cf)cae’ - di( mdu, dm) _ (1—e)te  (1+e)
(1—e)*er(14c) so(V

LAU,dl0) ~ (1+¢)®cie* (146}
(see (12) and (12**), p. 80) and hence,

2 1, du, di) >_1_, . 03_640202(1-%;02) ie
dsx(N, N,dU, dU) Cy (1+ed)

(25) C3 =

5. Bounds for ds,/dsy in the neighborhood of points of the second

order. In the present chapter we consider the point o ((3) through which
passes a segment of an analytic surface

(1) 3,=h(Z) (% = H(Zy)

s0 that o (0) is an interior point of the segment 32 and 8200 (S2, S2edD).
We assume that the transformation

(2) t=[21 =2 —h(Z)y 2y = 73] (T =4y = Zy—H(Zy), Zy = 2))

is one-to-one and holomorphic in D (55). Let d = t(S) (533 == T(;D)). The
boundary point o = t(0) (0 = T(0)) of d (D) will lie in the segment
8 (S2) of

(3) 2,=0 (Z,=0)

and $2 (&?) belongs to the boundary of d (D).

The coordinates n,,n, (N,, N,) where n, =0 (N, = 0) coincides
with the analytical plane in which the segment $2 (&2) is located and
where n, = 0 (N, = 0) is the analytic plane perpendicular to =, =0
(N, = 0), are called coordinates normal with respect to the point o (0).

Remark. The plane n, = 0 (N; = 0) coincides with the plane (3).
We make the assumption that

(4) }cbc& (Scécﬁ)
where~i and a are domains which one obtains by the PCT ¢~* from

(5) i = ["(n+7)— m|* > 0, o — [ny]* > 0]

and

2
(6) W= [9(2)(”’1+ﬁ1)+ 14]* >0, Q(Z) — [ns|* < 0]
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respectively. (fs =T745), A = 7-'(A), where
(7) 3 = [PY(N,+N)— N, " >0, PY'— |N,12 > 0],
(8) U = [PON,+N)+ N[> >0, PO’ — N, < 0)).

THEOREM 5.1. Let W be a one-to-one and continuous transformation
of the domain d onto D, where d and D are domains described tn Theorem 4.1,
Let {25} = z(® z(K’} Z® — W) be a set of points which approach
to the pomt g = (zl,z2 of O which is an interior point of the lamina
8 (0 = {7, 7% & c 0®). Further we suppose the points {ZE)} ({Z7EN),
(Z®) > 7O = 0) lie in the domain

- 2

¢
(9) Q= t—‘[lzl—zi’l%r lea—aaf < (31—l + :z'l-—zi’f]
- 2
(9 = T_l[l21~2‘1’12+|22—23|2 <2 (B~ B+ T, 1) ])
If the vector {dw} ({AUY}) satisfies the hypothesis (3.6) ((3.7)), see p. 75,
then there exists a constant ¢; << co such that the imequality
1 dsy (%, 2,

d
(10) 0<—<—2 "
“  dsy(Z,%Z,dU,dU)

holds.

Proof. Since the PCT’s ¢ and 7 preserve the invariant length, we
consider the PCT W which transforms d into ®. Using the coordinates
N1y Ny (N, Ny) normal with respect to the point o (0), we have by p. 37
of [8]

(1)?

— 0
Ki(n, n) = |"’01’2 2 ) ’
o ) (@
(11) o
Ka(n’ n) = I 1|2 2 ) 3
nz(n1+n1+ L) (i~
‘ - g (1)2 2
asi(n, m, du, du) = 2 Loy T : | ,
(nl‘l—ﬁl“‘ |%(lll) ) le v ~ImalY |
L s
(12) :
d 2 (2) d 2
ast(n, @, du, dz) — 2 [ 1%l ¢ ldual.
[7a]” (na]* —o®™")?
7’?;1—f— 1+ (2) J
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and analogous expressions for Kq, Ky, dsg, dsy with ng, o™, duy, replaced
by Ny, P®, dU, k =1, 2. Thus by (2.1) and (2.2) we obtain

(13)  hs(n,m, du, du) 2,2
9(1)2 hy— Imal”
|,n1l2 )2 02 Q(l)
. N (Q( > __
0" "y

12
214 o il |l £
_ 2
o 2 I?’l |2 . 2
9(2) h? (1_ (1)1h ) (9(1) _]%212)2
0 1

> dsy(n, 7, du, di)

2\ 2
5 ln |2 2 " 9(2)2(}1’1—!— IZ(IJ) )
1
2% (1———th ) (0" — [naf*)” | | ey |* + |y |?
\ il —

(15[ — 0™)?
2 In I2 4
2 2
oI (1+ —a ) (Ino*—¢™)?
1
= hg(n, @, du, d@), b, =n,+n,.
Using (13) and the analogous formulas for Hk(N N,dU,dU0), k= 5,6,
yields
2 2 |n ]2 2 2 N 2 \4
(PO (1 ) (e (1+ gy (=Y
R yra(r P\ o RARS .
o PR (1— S} (00— (1 ) (-2
1 1
122 |"7/1’2
i1 @
|du,|*+ —— |du,|*
. (¥ — naf') __dsi(n, @, du, d7)
P(2)2H§(1+ B ) = LN, N, dU, d0)
g
AT, >+ —— |d U,

‘ n 273 N 2 \4
e‘z'zP(z’zﬂi(l— ; ! ) (" — [ ( E )(P(l’z—iNzlz)z
1

—> 5 5 ln |2 4 2, | |2 2 9 X
(1) (1) ]2 1 1 (2) (2) o 2,2
0 £ ll( 1 9(2)h1) (lnzl ) (l_[_ _P(Z)Hl) (P lNzl )
(2)2h2 1 | 1‘2 2 FITRE
1 _I— (z)h ] 21
2 1
|dull _|_ ([n2|2_9(2)2)2 B
X N\ , where H, = N,+N,.
P(1)2H§( o l 1l )
4T+ PO\
1 )2 h 2
(P — [V g)
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Since we assume that we approach to o (0) in the cone 2, it holds
by (3.13), p. 76,
1 1
(15) Z(qzl+ﬁ1)2 < |maf*+ 1) < 202(7%"'%1)2
and an analogous inequality for (N,-+N,)’. Thus for sufficiently small
n1y Ne(Ny, Ny), by (15) and (3.14),

o PO (| N, P4 | Vy%) (1 +e)? o®* (1 L&) P
4

(16) 2?2 p(2)* (1) 20 p(1)? 2
o PO (Imy 2 |maf?) (1 —e)* (oM —£)* (1 —e)2 (P —o)
1
(1, +7,)% (0— —1) |y |*
|duy |2+ -
1 (" — [maf’) _ _ds(n, 7, du, da)
N, ~ dsA(N, N,dU., dU
|dU1]2—|— ( ‘I(‘z)lzvl) (—-—1)|dU |2 SSD( L] ’ ’ )
P 3
2
oV PO (NP | V%) (1 — )2 (o — )2 (1 —e)* (PW* )2
oW PO 62 (| P4 [mg?) (1 +e)*0®* (1 1) PO
1
(”1“’“’"/1) ®° (?—1)[61“1]2
s *+ i
X 29 i , &>0.
(N, + NP0 (—2 —1) Qv
|dU,|* + o]
(P —g)?
From (3.6), (3.7) and (3.8), p. 75, it follows that
an G (| duy >+ |duy|?) <‘ duy G dul |duf) e
e AU+ T |avu, | &AL au,p S @

Using the results of §§ 3 and 4 and carrying out some additional
considerations (see [10a]), we obtain bounds (1.3) in domains bounded
by two segments of analytic hypersurfaces.

5. Description of a special class of QPCT’s W. In order to obtain
the desired bounds for the distortion of non-Euclidian measures it is
sufficient to define a diffeomorphism H of a domain d onto ®. Since
the metric ds? is invariant under PCT’s it is convenient to choose among
pseudoconformally equivalent domains, a domain of a simple structure,
and to determine bounds for the distortion of euclidian measures under
the diffeomorphism H. For instance if ® is a domain which is pseudo-
conformally equivalent to a circular domain €, we shall consider a mapp-
ing of the unit hypersphere ¢ onto €.
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In [9] a QPCT of ¢ onto a Reinhardt circular domain has been dis-
cussed. (It should be noted that the present QPCT is different from
that considered in [9] for the Reinhardt circular domains.)

For every circular domain € we can construct its “representant”
t(€). This is the totality of points (X,, ¥,, X,, ¥,) of € for which ¥, = 0
and X, > 0. On the other hand, with every point Z, = R,¢'”!, X, of
1(€)+€ A (Z, = 0) we associate the “orbit’:

(1) F(Zy, X,) = [Zy = X, 6010 Z, = X6, 0 < D < 2n].

Then

In the following we assume
a) there exists a boundary point P(Z{, X{") of ¥(€) such that

(3) XP > X,, (Z,X,)er(€)—P;
b) the segment of the straight line connecting the origin O with P, i.e.
(4) Z,=rZ®, X,=rXP, 0<r<1i,
lies in r(€);
¢) every intersection
(5) t(€) A (X, = const), X, < XP,

is a simply connected domain. _

We define the QPCTW of the unit hypersphere ¢ onto the circular
domain € by describing at first the mapping of r(¢)4-¢ ~ (2, = 0) onto
t(€) L€ A (Z, =0). We set

(6) X, =sm,, &=2X{,
and we assume that the circle [|z,| < (1—a3?)"?, x, = @, ], is mapped con-
formally onto
(7) 1(€) A (X, = 823)
so that the point [z, = 0, &, = x5 ] goes into (Z; = sz,, X, = sx;) of 1(€)
and the direction of the positive z,-axis goes into the direction of the
positive X, - axis.

The mapping W of ¢ onto € is defined by assuming that (27, 2;) goes
into (Z1,Z,;) where
(8) z;k = zlei(pa z; - mzeiq):

(9) Z* = 7,6°®, Z,= X,¢®,
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(317 ) EI(C)—[—C A (2 = 0), (er X‘z) el’(@)—|—€ ~(Zy = 0), and
(10) ' p = D.
Let du = (du,, du,) be a vector which is transformed by the QPCT

W into dU = (dU,,dU,). We shall determine bounds for the distortion
of euclidean length of du, i.e. bounds for

( AU, "+ ldUz|2)”2
|duy|* + |du,|*

Since by the transformation zf = 26" (Z}% = Z,¢"), k = 1,2, the
domain ¢(€) is transformed onto itself and since by a rotation the Euecli-
dean length is unchanged, we can assume that the one endpoint (2, 2,),
(%, Z,)) of the vector du(dU) lies in [z, > 0,9, = 0], (X, >0, ¥, = 0).

Since we assume that W transforms ¢ ~ (z, = const., ¥, = 0) = ¢(x,)
conformally onto € ~ (X, = sx,, ¥, = 0) = € (sx;), it holds

(11)

Kc(m2) (2’1, 51)

(12) AU, > = |du,|? —
1 Y K(oay (%1, Z1)
Kz, 1s the kernelfunction of c(z,). If we write
(13) du, = dty+idv,, dU, = dT,+idV,,
th:n ar, s
(14) =
(15) |duy| cosp = dt,, |duy|sing = dv,
and by (10)
(16) |dU,|cosp = dTy, |dU,|sing = dV,.
Consequently
d
(17) AV, = aT, 2% — v,
dt,
Kc(:c )(217 Z1)
18 AU >+ 1d U, = |du,|? : +82 |du,|2.
(18) AT+ 18U = ]! = ot
Thus:

Let the QPCTT maps the hypersphere ¢ onto the -circular
domain € and the vector (du,, du,) at the point (2, 2,) into the vector
(dU,, dU,) at the point (Z,, Z,) as described above. Then for the distor-
tion of the Euclidean length holds

2 241 = 1/2
o (A Ren
|y |"+ |ty K s(say)(Z1y Zy)

Here Kc(x‘) (21, 21)(K@(3xt)(Z1,Zl)) is the kernel function of the inter-
2 2

section of ¢ with the plane (x, = a3, y, = 0) (of € with (X, = sa¥, y, = 0)).
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