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Introduction. The purpose of this paper is to give estimates for
the degree of convergence of some number sequences converging to the
logarithmic capacity or to the hyperbolic capacity of a compact plane
set I as well as estimates for the degree of convergence of some sequences
of functions converging to the Green function () of the unbounded
component D, of O\ ¥ with a pole at oo or to a function closely related
to the function mapping conformally a doubly connected domain onto
an annulus. In the case of hyperbolic capacity we assume that F is a com-
pact subset of the unit disc {|z] < 1}. We prove that if each component
of # has the ordinary diameter > 2r, r being a fixed positive number,
then the degrees of convergence of all the sequences are estimated by
expressions of the form O(log(n+1)/n). In the case of sequences of func-
tions the estimating expressions depend also on z.

Our results generalize results due to Kleiner [2] and [3] and
Pommerenke [6] and [7], who considered ounly the case of logarithmic
capacity of a connected set. Also they used different techniques of proof.
Our method of proof is based on the continuity behaviour of the Green
function @ (z) if a point # tends to a point in K (see Lemma 1). We prove
it by means of an inequality due to Leja [4, 5], used by him for deriving
a very useful lemma on polynomials.

1. A continuity property of the Green function. Let E be a bounded
closed set in the complex plane C. Denote by D_ the unbounded compo-
nent of O\ #. For each finite ze¢C define L(z) = L(z2, E) by

(1.1) L(z) = sup V[P, (2)],

the sup being taken over all polynomials P,(z) = a,2"+...4+a,, n > 1,
such that |P,(¢)] <1 on E. It is known [5, 10] that L(z) =1 in N\ D,
L(z) > 1 in D_,. Moreover, if the logarithmic capacity d (&) of E is posi-
tive, then the restriction of G(z) =log L(z) to D, is the generalized Green
function of D with a pole at co. We shall prove the following
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LEMMA 1. Assume that there exists a real number r > 0 such that

if F is any component of H, then sup|z—C| = 2r. Then for each 6 >0
2,0l

and for all zeC such that dist(z, ) = mln[z—C[ 0 we have

e

Proof. In [4] (see also [5], p. 272-273) we find the inequality

(1.3)  VIPa()] <[2(n-+1)max|P,(0)| "™, it  dist(z, B) < 9,
Ll

P,(2) being any polynomlal of degree < n and

o2 4k 2 p
_Zl" w0 YT

By (1.1) and (1.3) we have
1
G (2) <log(1+a?)+2aarctg—, if dist(z, B) < 4,
a

because

2 2 1
An, —>f10g * ;;w dr = log(1+a2)+2aarctg —.
a
0

But log(1l-+a?) < o and are (tg 1/a) < /2, so the proof is concluded.

Remark. Let H; = {#: G(2) = log(1+6)}, 6 > 0. Inequality (1.2)
implies that there exists a positive constant K = K(E) such that
dist (F;, B) > Ko? for 6 > 0. This may be used for deriving the fol-
lowing inequality: |P,(z)] < Men?*/K on ¥, P, being a polynomial of
degree << n such that |P,(z)] <M on E (see [9]).

2. Degree of convergence in approximations of the logarithmic capacity
and of the Green function. Given any system ;™ = {Z,, ..., l,} of n+1
points of the complex plane ¢ we put

(2.1) Ve = [] 1=l
<i<k<n
AD () — I_[ (Gi—C)y, j=0,...,m,
k—=0(k #7)
(2.2) w(z, I™) = H (2 —Ck),
k=0
w (7, £™)

(2.3) IN(z, t™) = § =104 .00y iy

(z—07) A9 (™)’
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the last definition being valid only under the assumption that ¢; + ¢,
for j + k. Let B be a bounded closed infinite subset of (. Denote by

(2.4) ﬁ(n):{%nvﬁlm--'annn}a n=1,2,...,

a fixed system of #n-+1 points of E such that V(;™) < V(5™) for every
{™ < K. We shall always assume that the points of the extremal system
(2.4) are numbered in such a way that

(2.5) 14O(™)| < 14D(™)],  j=0,...,n.
Let d,, 6,, K,, be defined by

d, = [V(n(“).)]””(”“’, B8, = '/lA(O)(,?("))]’

Koy = [max|o(z, )00, 5 >1,
Ze

(2.6)

and let two further sequences r, and ;n be defined by

ratl = min [max|w(z, {™)|],
M0 2zl

(2.7)
1= min [max|m(z, {™)[], =« >1.

tMCE el

Fekete [1] pro-ved that the sequence {d,} is convergent. Its limit
d = limd,, is called the transfinite diameter of E or the logarithmic capacity
of E. The inequalities

(n) 1/n
(2.8) d LAY ))] 5,

V(n"

Sy <[0,03... )0, o >1,

A

o -
o ST < Kn < [

A\

may be proved by standard reasonings (comp. [5], [12], [7]). So all the
sequences in (2.8) are convergent to the same limit d — d(K).
Suppose d(H) > 0 and let L(z) be defined by (1.1). Then lim L(2)/|2|

Z—=00

= 1/d and G(2) = log L(z) restricted to D, is the generalized Green’s
function of D,. It is also known [6] that the sequence I,(z)
= VILOG, )| ,n =1, 2, .-+, 18 convergent to L(z), zeD,. Moreover,
if D, is simply connected, then

4+ iaag n=1,

where 0, are suitably chosen real numbers, is convergent in D_ to the
univalent conformal mapping of D, onto {|w| > 1}. We ghall prove the
following
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TaeorEM 1. Let E be a bounded closed subset of C such that the function
L(2), given by (1.1), is continuous in C. Let 2(0) be a positive continuous
function defined for 6 > 0 such that im 2(0) = 0 and log L(2) = G (2) < Q(9)

6—0

if dist(z, B) < 8. Then for n =1, ... we have
(a) 0 <G(2)—logly(?)

3 1 1
< ——10g[R(fn-|—1)]+Q(——), if dist(z, E) > —, 2eD,
n n? n2

(b) 0 <log(d,/d) < %mg[R(nH)HQ(%),

where R = [sup |z—C|4-2]"°.
z,tell
Proof. By (2.3) and by (2.5) we have

[AD (™) |z — 1)
1A (™) |2—nen

r(2)
R(z)’

|LO (2, 4™)| = |L9 (2, ™))

>IL(i)(z777(n))l J=0,..,m,

where 7(z) = dist(z, E), R(z) = max |¢—|. The identity

teE

n
1= Y Iz, n")
j=0
implies that

; 1
max |L9 (z, n™)| =

in C.
0<i<n n-+1

Therefore
2)[Ln(2) < [(n+1)R(2)[r(2)]""L(2), 2eDg.

The function U,(2) = log [L(2)/L,(2)], U,(cc) = log(d,/d), is har-
monic in D . One easily checks that |L”(z, ™) <1 on E. So by (1.1)

we have L,(z2) < L(z) in €. Therefore U,(z) >0 in (. Then
1 +1)R(z
(2.9) 0 < Un(e) < glog(l';—(%u +0(9),

if r(2) = dist(z, B) < 8, 2eD,.
Let D, be a subset of D, defined by

D, = {zeD,,: dist(z, E) = 1/n?}.
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The D, is a closed subset of Dy, D, < Dyi1y and D = lim D,. By

n—o00
the maximum property of harmonic functions and by (2.9) we get

(2.10) 0 <U,(R) < —%log[R(n-i—l)]—l—Q(%) for zeD,,

where R = [suplz—(|+2]". The proof of (a) is achieved. Inequality
2,0ell

(b) is an immediate consequence of (a).
Combining Lemma 1 and Theorem 1 and using the last inequality
of (2.8) we get the following :

THrOREM 2. If E 48 a bounded closed set each component of which
has the ordinary diameter = 2r, r being a fized positive number, then for
n=1,2,... we have

(a) 0 <G(z)—logL,(z) < —3—10g [R(n+1)]+ (n—l— ~{—) :} ,
n l/'rn l/rn

1
if dist(s, ) >, zeDy,

(b) 0 < 1og(0,/a) < - log[ M(n-+1)],

(© 0 < log(du/d) < ~log[ M (n-+1)],

where R = [sup|s—[+2]" and M = R exp[(x+1/Vr)1Vr].
z,leH]

Let us now prove Lemma 2 which is a version of the Harnack’s
theorem.

LEMMA 2. Let D be a domain in the closed plane C. Let {u,(2)} be
a sequence of non-negative harmonic functions in D. If Un(2y) — 0 for a fized
point zyeD, then there exists a positive function K (2) continuous in D such
that

(2.11) 0 <up(?) < K(2)un(2), 2eD, n=1,2,...

Proof. Let {D,} be a sequence of domains with the following pro-
perties:
1° %yeD,, D, =« D, ;, v=1,2,... and D = lim D,

2° the boundary 7, of D, is a sum of finitely many disjoint analytic
closed curves oriented positively with respect to D,.

Let G,(z, {) denote the Green function of D, with a pole at ¢. If Ne
is the normal to I', at {el’, directed into the interior of D,, then by the
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well known Green’s formula we have

1 0G,(Z, ?)
:EEP un(c)———anc’ ds;, zeD,.

v

Un(2)

The function 4G, (¢, 2)/0n, is positive and continuous for (eI, zeD, ;.
Therefore the function

GGV(C,z)/aGp(C,%)

zel,
f‘)n; a’ng ]’ ¢ -

(&) = sup[

[ 51"’,

is continuous and positive in D, ,;, and

1 96, (2, 2
tn(2) < K, () o= fun(c)—(%z—f—)dsc — K,(2)un(2)), #eD,_,.
[ C

v

Define in D a new function K*(z) by

K*(2) = inf K;(2), if zeD,.
I=v+1

The function K*(2) is finite and upper-semicontinuous in D. So,
by a theorem of Baire, there exists a continuous function K (2) = K*(z),
zeD, such that (2.11) holds, q.e.d.

We could also prove Lemma 2 by using the Poisson formula instead
of the Green formula. It follows from Lemma 2 that the degree of con-
vergence of u,(z) on an arbitrary compact subset of D is uniformly the
same as at a fixed point z,eD.

In particular, if Q,(z) =2"+ ..., =»n=1,2,..., is a sequence of
polynomials such that

M, = [max[Q,(:)|]"" —d = d(E)
zeEl

and all zeros of the polynomials dre contained in O\ D,,, then

Q)"
(2.12) 0 < G(z)—log — < K(2)log(M,|d), =zeD,
K (2) being a continuous function in D,.

The numbers 7}, #n, K, and d, are maxima on ¥ of moduli of suitably
chosen polynomials @, (z). In all these cases we may get estimates of the
form (2.12) in D, (or in the complement of the convex envelope of K
in the case of r,). We know [6] that if F is convex, then

1
0 <log(r,/d) < —log2.
n
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So, if T, (2) = 2"+... is the Tchebycheff polynomial of a convex compact
set F, then
T, (z)|"™ 1 ’
0 < G(2)—log I—JﬁL < K(2)—, zeD,.
Ty n
The estimate log(r,/d) < K [n, K = const, is also valid if ¥ is a sum
of finitely many disjoint analytic Jordan curves [11].

3. Degree of convergence in approximations of the hyperbolic capacity
and of a conformal mapping of a doubly connected domain. Let F
be a closed infinite subset of the unit disc {|z| < 1}. Let E* — {zeC:
(1/Z) e I}, where Z is the conjugate of z. Denote by D the component of
O\(¥# v E*) containing the circle {|z| = 1}. Let

2—
1—2l

w(z, ) =

and put
vy =[] i, ),
<i<k<n

where ¢™ = {f,,..., &} is a system of n-+1 points of K. Let

(3.1) ?7(”) = {Nony Niny +++s Nnn}

be a fixed extremal system of E with respect to |w(z, ()|, i.e. V(™)
< V(5™) for (™ < E. Let the points of 4™ be numbered in such a way
that

n

(32) A" <AOG®) = [ [wm, ma)l, i=0,...,0.
k=0(k1)

According to [12] and [8] the sequences
dy = [V (™) "D and 8, =VAO (™), n>1,

are convergent to the same limit d_ = d_ (#) which is called the hyperbolic
capacity of K. Moreover [12],

, 1
(3.3) logl/d_ = n;fEf Ef log W:C_)Id”(z)dﬂ(é)’

u being a positive mass distribution on ¥ of total mass 1.
Let 7,, 7, and K, be defined by

n n
. 1/n o . 1/n
7, = min [max l I lw (2, z,)[] : I mm[me;ﬂx ” lw (2, z,,)]] 5
0 Ze.

lzl<1 ® zell 2zl o]

K, = [max 17 (2, ]

zell p=0
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One may prove that the present sequences r,,#,, K,,
[V (™) [V (g D" 8, and d, also satisfy the inequalities (2.8). So all
the sequences are convergent to the hyperbolic capacity of E, and the
degree of convergence of each of them may be estimated by the degree
of convergence of {d,} or of {d,}.

Let d_(FE) > 0 and let

g (2) = ain []_”[ w(z, n‘”’)]”“.

Then, according to [8], there exists a multivalued function g(z)
analytic in D, = {#eD: || <1} such that {|g,(2)|} is convergent to
lg(2)| in D;. The function ¢(z) satisfies the inequalities 1 < |g(2)| < 1/d_
in the interior of D, and |g(2)] = 1/d_ on {|z] = 1}. Moreover, if each
point of K is contained in A along with a continuum not reduced to
a point, then lim|g(z)] =1 as 2 tends from D, to a point in K. In the
sequel we shall assume that |g(z)| is defined also in # by putting |g(z)] = 1
in E. By the reflection principle |g,(1/2)] = 1/[d5|g.(2)|] for zeD. So
we may assume that ¢(z) is defined in D, |g(z)| = lim|g,(?)|, 2eD. Ob-
viously the funection log|g(z)| is harmonic in D. If F is connected, the
functions ¢,(2) and g(2) may be assumed to be single valued in D and

the function ¢ transforms the doubly connected domain 131 onto the
annulus 1 < |w| < 1/d_.

By the way, let us observe that an elementary proof of the last fact
given in [8] is not complete because the author assumes without proof
that if F is connected, then |g(z)| takes in D, each value of the inteval
(1, 1/d_). However, the gap may be filled up in many ways.

THEOREM 3. If E is a closed subset of {|z| << 1} each component of which
has the ordinary diameter = 2r = const > 0, then there exist positive
numbers K and K, such that

(a) 0 <log(d,fa) < KEUTR g e
1 1
() 0 <logllg(a)|lga(a)l] < Ky B2

if zeD, and dist(z, H) > 1[n2.

Proof. Take L(2) = expG(z), where G(z) is the Green function
of the unbounded component of O\ Z with pole at oco. Since L(z) > 1
on {|3| = 1} so there is a number m > 0 such that L™(z) > 1/d_(F) on
{|2| = 1}. By the maximum principle |¢(z)| < L™(2) in D,. Hence by (1.2)
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we have
S\ /0 . .
(3.4) loglg(2)] < £(9) = m(n—l— ]/7) ]/_r_’ if zeD; and dist(z, E) < 4.

We shall agsume that 6 > 0 is sufficiently small so that

2(6) < min |[z—C]|.
2| =1,eE

The set [y = {zeD;:log|g(z)] < 2(5)} contains the set FE, = {z:
dist(z, B) < é,2eD,}. One may easily prove that

(3.5) d_(Ey) <d_(I}) = d_(E)e*®.

We shall now prove (a) by using a slight modification of a reasoning
due to M. Tsuji ([12], p. 95-96). Take n1 distinet points 2;,¢ = 0,1, ...,n,
on F and put 4; = {z: |[s—z;] = 1/n?}. Assume n is so large that

.Q(i) < min |z—{].

n2 l2l=1,2¢E

Let o; be the mass 1/(n-+41) spread with constant density on A;.
Put ¢ = oy+...+0,. Then by (3.3) and (3.5) we have

1 1 1
m O sl < f f 8 Tuge, gy B0

- Z fda, flog

where 0 = 1/n2 Since log 1/|w(z, ()| is a superharmonic function of ¢,
‘we have

log

doi(0),

[tog " doy(t) < ——log
2 CwG, o) "

+1° |w(e, )|
so that

10_{6\7%_1_12[{;’ w(z, ;)| Aoy (2).

qu?

If i # j, then

1 1
log .
[w (25, 23)|

n-+1

1
log——do;(2) <
_fglw(z,zi)l ’
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If ¢ = j, then
flog—l—————— doi(2) < log(n+1)+ log(1—a?), a = supl?|.
2 o)l 1 w1 o
Therefore
log 1 —R0(d) < = log ! + - log(n-+1)-+ log(1—a?).
d_(FE) n—+1 dp n+1 n+1

Since 6 = 1/n?, this inequality implies (a).

Remark. By an analogous reasoning, using the continuity prop-
erty (1.2) of the Green function G (z), we could give a new proof of the
corresponding estimates for the transfinite diameter.

To prove (b) we shall use the following inequality [8]

(1—a?)r(2)
2R(2)(n+1) "’

(3.6) gal)" > 2eDy,m =1,2,...,

where r (2) = dist(z, B), R(2) = sup|[z—{|, @ = max |z|.
e 2ell

Let I, be a subset of D, defined by I', = {zeD;: dist (2, E) = 1/n2}.
By (3.4) and (3.6) we have

3
(3 7) 0 <10g [g(z)l éilO 4(%—|-1) —l—Q(L)
lga(2)l — n 1— n?
1 1
< K, LA ), K, = consgt, zel,.

If |2 = 1, then 0 <log[lg(2)|/Ig.(2)|1 = log(d,/d_) < log(d,[d_). Now
(b) follows from (3.7), (a) and from the maximum principle.
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