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Intreduction. In dealing with questions of set representability of
Boolean algebras, Sikorski has defined classes CSR, K, and nSR,
of Boolean algebras, where n is an infinite cardinal. He has asked, in [8]
and [9], whether K, is distinct from CSR in case n is uncountable. Sier-
pinski showed, in [6] and [7], that Ky, is distinet from CSR. In this paper,
we construct for each infinite n a Boolean algebra belonging to K, but
not to CSR. It will follow that CSR is properly contained in K, and that
K, is properly contained in nSR. No Boolean algebra in K,—CSR can
have cardinality less than n*; and we show that if n* = 2", then there is
a Boolean algebra of cardinality n* which is in K, —CSR. We also show
that no Boolean algebra in K, —CSR can be &, complete.

Preliminaries. A Boolean algebra o is called completely set-represen-
table if there is a set Y and an isomorphism k from . into the field of all
subsets of Y which preserves all joins and meets that exist in &/. Similarly,
& is called n-set-representable if such Y and h exist with h preserving those

joins >'a, and meets [[a, of & for which T has cardinality at most n.
teT teT

CSR and nSR denote the classes of all Boolean algebras which are comple-
tely set-representable and mn-set-representable, respectively.

We have the following equivalent formulations of CSR and nSR.
Proofs can all be found in [10].

o/ ¢ CSR if and only if o is atomic. This result is due to Lindenbaum
and Tarski and is proved in [11]. Also &/ ¢ CSR if and only if, in the Stone
space of &/, the union of all nowhere dense sets is nowhere dense. A subset
Z of a topological space is called n-nowhere dense if Z is a subset of a nowhere
dense set X which is the intersection of at most n open and closed sets.
Now «enSR if and only if, in the Stone space of </, the union of all
the n-nowhere dense sets is a boundary set (i. e. it has empty interior).

The intermediate class K, is defined by the following condition:
& e K, if, in the Stone space of &/, the union of all n-nowhere dense sets
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is nowhere dense. To obtain an algebraic characterization of K, we need
only compare its definition with the topological version of weak (m, n)-
-distributivity. A set {a,,: teT, se S} is called (m, n)-indexed if T has
cardinality at most m and 8 has cardinality at most n. Let fin S denote
the set of all finite, non-void subsets of S, and let (fin 8)” denote the set
of all functions from 7' into fin §. A Boolean algebra . is called weakly
(m, n)-distributive provided

[[Xoai= 2 [] D a

teT 3¢S Pe(fin S)T' teT sed(t)

for every (m, n)-indexed set {a,,: te T, se¢ 8} of elements of .« such that

the meets [| > a,, exist, all the joins ) a, , exist and the meet [] }'a,,
tel sed(t) 8eS teT 8¢S

exists.
The following theorem is proved in [10]:

A Boolean algebra of is weakly (m, n)-distributive if and only if, in the
Stone space of o/, the union of at most m n-nowhere dense sels is nowhere
dense.

We see that &/ ¢ K, if and only if, for every cardinal number m, &
is weakly (m, n)-distributive.

The proof that a Boolean algebra < belongs to K, is actually carried
out by proving that o/ belongs to a smaller class C,. To define C,, a join

a = Na, is called an n-join if the cardinality of T is at most n. Now
teT

& e O, if every n-join which exists in & is essentially finite (i. e. there is

a finite set F = T such that a = ) a,). It is easily seen, either algebraically
teF

or topologically, that C, < K,.

Example 1. There is a Boolean algebra ¢ which is in K, —CSR. The
following construction is a combination of two simpler ones, and is due
to D. Monk. First we note that for every Boolean algebra .« there is
a Boolean algebra # such that « is a subalgebra of # and no atom of
&/ is an atom of #. This is easily proved by constructing # isomorphic
to the free product (Boolean product; [10], § 13) of & with a four-element
Boolean algebra. The second notion we use is that of a perfect extension.
% 18 called a perfect extension of &/ in case & is a subalgebra of #, & is
complete and atomic, and if an element a of & is the join in 4%, of a subset
& of o, then a is the join of some finite subset of &.

Every Boolean algebra .« has a perfect extension #. To prove this
it suffices to construct # isomorphic to the field of all subsets of the Stone
space of /. The fact that every join, in 4, of elements of ., is essentially
finite follows easily from the compactness of the Stone space.

We let 2 be the least ordinal of cardinality n*, and define two 1 termed
sequences of Boolean algebras as follows:
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o, is the field of all subsets of a denumerable set,

A, is a perfect extension of «,,

for a < 4, &,,, is an extension of #, such that no atom of %, is an
atom of &, ,,

AB... 1s a perfect extension of #,,,,

for any limit ordinal y < 4, o, = %4, = U &,

a<y

Note that for « < f < 1 we have &, < Z,< ;.
Finally, we let

¢ =U ..

a<i

% is atomless and hence not in CSR. For if a<¥%, then choose a < 1
such that ae o,. ae f,, S0 a is not an atom of &, ,. It follows that a is

not an atom of €. It remains to show that ¥< K,. Suppose a = )'a, is
teT

an n-join which holds in ¢. There is an ordinal 8 < 4 such that, for all

teT, a,e 4, and ae o . Observe that a = Y a, holds in each of 7,
teT

., and B, . Since %, is a perfect extension of o, ,, there is a finite

set F < T such that a = D'a, in %,,,. a = Y a, holds in ¢ also. This
teF teF

proves that € C,, hence ¥« K,,.

The Boolean algebra ¢ of Example 1 has large cardinality. We now
turn to the problem of finding an element of K, —CSR which has the
smallest possible cardinality. This smallest cardinal is n*. Let o< K,.
If o has cardinality at most n, then every nowhere dense subset,
of the Stone space of «, is actually n-nowhere dense. It follows that
o ¢« CSR.

We need the notions of universal and homogeneous. Let £ be a Boolean
algebra of cardinality n*. # is called universal if every Boolean algebra
of cardinality at most n* is isomorphic to some subalgebra of #. # is
called homogeneous if for every subalgebra of of # whose cardinality is
at most n, and every isomorphism h from .« into %, there is an automor-
phism of # which is an extension of h. These are special cases of general
notions due to Jonsson ({2] and [3]). Jonsson proved that, under certain
conditions on a class S of relational systems and under the assumption
that n* = 2", there is a unique relational systems in § which is universal
and homogeneous of cardinality n*. The class of all Boolean algebras does
satisfy Jonsson’s conditions. The amalgamation property was proved by
Dwinger and Yaqub [1] and the others are obvious. Jonsson’s results do
not tell us which Boolean algebra is universal and homogeneous. Keisler
[4] identified the universal homogeneous Boolean algebra of cardinality
N, = 2% ag being the quotient algebra of the field of all subsets
of 8, modulo its ideal of finite sets. This is the Boolean algebra which
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Sierpinski showed to be in Ky —CSR (see [6] and [7]). It turns out that

the universal homogeneous Boolean algebra of cardinality n* is in
K,—CSR.

Example 2. Assume that n® = 2" and let 4 be universal homogeneous
of cardinality n*. # is atomless, for suppose b is an atom of %. The four-
-element subalgebra of # which is generated by b has an obvious automor-
phism which cannot be extended to an automorphism of #. This contradicts
the homogeneous property of #. We next show that #£eC,. Suppose
that # has an n-join which is not essentially finite. There is a set {a,: te T'}

of elements of # such that T has cardinality at most n, Y a, =1 (the
teT
unit element of #), and the n-join 1 = > a, is not essentially finite.
teT

Let o« be the subalgebra of # which is generated by {a,: te T}. o/ has

cardinality at most n, and for every finite set F < T, 1 # Y'a, in o
teF
also. By Zorn’s Lemma there is a maximal proper ideal J of & satisfying

{a,: te T} < J. Let € be the direct sum of o/ with the two-element Boolean
algebra. The elements of ¥ are ordered pairs (a, ¢) with ae o and i€ {0, 1},
and the operations of ¢ are componentwise. We define a function h from
&/ into € by

(a, 0) if aed,
(a, 1) if a¢d.

h is easily seen to be an isomorphism from « into ¢. Note that (1, 0)
is an upper bound, in €, of {h(a,): te T}. Since # is universal, there is
an isomorphism ¢ from ¢ into #. Since # is homogeneous, there is an
automorphism f of # which extends goh. Now 1 = Ya, in & implies
that e

1= Nf(a) = D goh(a).

tel’ teT

But for all te T we have h(a;) < (1, 0), so that goh(a;) < g(1,0) # 1.
This contradiction proves that #e¢ C,. Hence #¢ K, —CSR.

We next consider the question of whether a Boolean algebra
in K, —CSR can be n-complete. We show that it cannot by proving
the following

THEOREM. Let o/ ¢ K, and suppose « is R,-complete. Then o is atomic.

Proof. Since «¢ K,, « is weakly (m,n)-distributive for every
cardinal number m. We assume that there is an element a # 0 of .« for
which no atom b of .« satisfies b < a. We define M to be the set of all
subsets D of ./ satisfying the following conditions:
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(1) for each de D,0 # d < a;
(2) distinet elements of D are disjoint;

(3) a = D d;

deD

(4) D has cardinality R,.

M is not empty. For the principle ideal of ., which is generated
by a, forms an infinite Boolean algebra # with a as its unit element.
A well-known theorem states that every infinite Boolean algebra contains
an infinite set of pairwise disjoint elements. (A proof of this can be found
in [6].) An element of M is now easily constructed using the R,-comple-
teness of /. We choose suitable index sets T' and 8, with § having cardin-
ality 8, and for each De M there is a unique te T such that D = {d, ;: s¢8S]}.

We have
a = ”201“.

teT 8eS

Now consider any ®e (finS)?. We claim that

[ > é.,=o.

tel’ sed(t)

Forif x + 0 and # < D d,, for all te T, then « is an atomless element

sed(t)
of &/, as was the a above. z is then the join of a denumerable set G of
pairwise disjoint, non-zero elements. Letting y = a-(—x) (the meet of

a with the complement of z), we see that GU{y}e M. Let ¢’ be such that
Gu{y} =.{d,,,s : se S}.
It follows from the finiteness of &(¢') that

This contradiction proves

n Z d, =0 for every @ (fin8)T.

leT 3¢d(l)
Hence
Z dt,s = Ov

Pe(fin S)T teT sed(t)

and this contradiction to the weak (m, n)-distributivity of & proves that
& i3 atomie.

Concluding remarks. If m > n, then K, is properly contained in
K., because the Boolean algebra ¥, of Example 2, has cardinality too
small to be in K, . Evidently CSR is the intersection of all the K,.
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nSR is also properly contained in K, . For let o« be any atomless n-field of
sets. By the theorem, & is not in K,. The class C, is properly contained
in K, for let &/« C, and let # be the direct sum of & with the field of
all subsets of a set of cardinality n. It is easily seen that #¢ K, and £¢ C,,.
If, in addition, & ¢ CSR, then #¢ CSR also.
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