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In what follows I propose to sketch the chapter in “ Analysis without
epsilons” (or “Topology without open sets”) dealing with extensions
of continuous functions on dense subspaces.

As carrier of the convergence structure I adopt a common generaliz-
ation of sequence and filter which I call family (on X) (!): it is a triple
consisting of an auxiliary set 7', a collection # of its subsets, and a func-
tion  from T into the space X in question. This will be written simply
&, the underlying set 7' and associated function x being understood.
I come back to well-known notions if « is the identity or if 7 is partially
ordered and # the collection of final subsets; although I have not impos-
ed the usual directedness requirement since it is nowhere needed (2).
Actually I have no interest in 7', and so agree to regard its replacement
by any one-one image (with preservation of # and x of course) as not
changing the family.

A central role will be played by the following construct [7]: Let &
be a family on X and for each teT let # (¢) be a family on X, underlying
sets being taken disjoint. The tterated family % (t): # has as underlying
set the union of those underlying the & (t); as associated function the
(unique) one extending the functions associated to the # (t); and as collec-
tion the sets | J {A(t):ted}, where A(t)eF (t) and A eF are chosen in
all possible ways.

To treat convergence and uniform convergence in a single pattern
I introduce the idea of a convergence on X: this is just a non-void set C
of families on X called convergent. Enlarging C makes the convergence
stronger.

If f is a function on X it turns every family # on X into a family,
written f(#), on its range: 7T and & remain unchanged while the asso-

[

(!) This notion is quite well known: see, for example, the introduction to
Bourbaki’s Topologie générale [4].

(%) On the other hand, one can if one wishes read all # as filter bases since none
of the constructions lead out of this class.
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ciated function is composed with f. If it respects the convergences pre-
sent I call f continuous.

I propose to study the interplay on X of a convergence C* with
another C’ (interpretable as C* restricted to, i.e. consisting of those
families whose functions map into, a subspace) and with convergences
C(x) indexed by X (interpretable, in the presence of additional structure,
as the families convergent to x): I shall say that C* is an # convergence
(2 convergence) with respect to C’, C(x) if F ¢ C* implies (is implied by)
F(t): FeC' for every (some) choice of F(t)eC (x(t)).

There is a strongest # and a weakest # convergence, the latter being
stronger than the former. Moreover, the convergence C* restricted to
a subspace X' is # or # with respect to C’ and C(x) so restricted; while
if C' and the C(x) are on X', then the restriction of an extremal con-
vergence is the extremal convergence on X’'. Note that C’ lies between
the extremal convergences if {{a:}} e C(x) for every xeX: because iteration
with & (t) = {{t}} leaves a family unchanged.

Somewhat deeper is: If C(x,) is, for each z,¢ X, an # convergence
with respect to C’(z,), C’(x), then the strongest # (weakest #) conver-
gence C* with respect to C’, C'(x) is an S (%) convergence with respect
to C* C(x). The proof turns on the associativity of iteration.

Let f: X - Y be continuous for the convergences C' on X and Y,
and satisfy f(C(x)) < C(f(x)) for every weX. Then f is continuous for
C* if on Y it is an # convergence and on X the weakest # convergence
(or of course any weaker, say one of the # convergences). Indeed if # e C*
on X, then for some F(t)eC(z(t)),#(t): FeC'; therefore f(F(t):F)
=f(#(): f(F)eC’' on Y which, in view of f(f(t))eC(f(w(t))), yields
f(F)eC*.

It remains to exhibit all this in the context of neighborhoods. I shall
say of families on X that # is cofinal in #', written # < &', if the image
of every set in &' contains the image of some set in & ; and that a con-
vergence is of neighborhood type if it consists of all (*) families cofinal
in some neighborhood family # (for which I may take T = X and z the
identity). Besides containing every family cofinal in one of its families (%),
such a C contains, with #(t) for all teT, also Z(t): {I'}. Conversely,
a convergence enjoying such closure properties is of neighborhood type:
% is just the image in X of # (¢): {T} with T the set of families in C whose
associated function is the identity.

(®) In order to have C a set it is necessary to make some restriction, say of
cardinality, on the allowed T’s.

(%) This condition is necessary and sufficient for C to be a union of neighborhood
convergences.
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If C’ is of neighborhood type and each C(z) is closed with respect
to #(t): {T} (5), then the strongest .# convergence is of neighborhood
type. Indeed, if # < #'¢C*, given F(t)eC (x(t)) for teT, take F (') as
F(t): {1’ (t')} for ¢'eax’~'2(T) and arbitrarily in C(2'(#')) otherwise;
then &F(t): F < F(t'): #', therefore # ¢ C*. The remaining property fol-
lows again from the associativity of iteration.

If C* C’, and C(x) are all of neighborhood type with respective
neighborhood families #*, %', (), then C* is an # convergence if and
only if #(x): #* < %'. Indeed, taking T = X, # = #*, and & (z) = % (=)
shows the condition necessary; conversely, & < #* implies F(t): F
< U(x): U< U'.

Again, if C* and €’ are of neighborhood type, C* is an # convergence
if and only if ' < #* (%). Here x¢ A means & < {4} for some F ¢ C(x).
Indeed, from #(1): F < ' follows &F < %' proving sufficiency; con-
versely, if #'¢C* let T = {(y, U'):yeU'},x(y, U') =y, F = {{y, U'):
U cV'}:V'e'}), and #(y, U’) be any family < {U’} in C(y); then
Fly,U):F < ¥ but F¢C*

By a convergence space 1 shall mean a set X equipped with an
assignment to each of its points x of a convergence C(x), these families
being called convergent to . A function f is now to be continuous if
f(C(x)) = C(f(x)); while C* makes X into an # or # convergence space
with respect to C’ and C (in that order) if, for every z,eX, C*(x,) is an
J# or # convergence with respect to C’'(z,) and C(z).

Little will be gained by writing out the straightforward specializa-
tion to convergence spaces of the above development. I content myself
with noting that besides the correspondence of C* with C’, either or
both of these could now be confronted with C; and with citing those
results for which I know an analogue in the literature.

Let X be an overset of the convergence space X’ and let C’( ) be
extended to the x¢X. Then the strongest .# convergence space C* on X
with respect to C’ (and C = C’) is an # convergence with respect to
C* (and C = C*). This was proved by Kowalsky [8] under additional
assumptions, among them that {{x’'}}¢C’(2') and that C’ be an .# con-

. vergence — therefore the strongest # convergence — with respect to
itself, since he wants to conclude that €’ is C* restricted to X’; and that
the C’'(x) be distinct for different x, since he wants to describe X in
terms of them (a requirement dropped in the fifth chapter of [9], where
however only topological spaces are treated). Note that if the C’(x) are
disjoint for different z, then in any # convergence space limits are unique,

(5) This is the case if C(x) is an S convergence with respect to itself on the one
point space {x}.

() More generally, for C*, C’ unions of neighborhood convergences, if and
only if €’ < C*.
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Let X be a convergence space with C(x); X’ a subset such that
C' (x), which is C(z) restricted to X’, is never void (“X’ is dense in X");
f a function on X to the convergence space Y continuous for C’(‘‘f is
continuous on X' and is extended to X by continuity’’). Then f is con-
tinuous for C. The result was proved by Bourbaki and Dieudonné [5]
(and appears in [4]) for the case that X and Y are topological spaces;
and subsequently generalized by Appert [1] to the case that Y is a neigh-
borhood type space.

It will be recalled that convergence in a topological space is spe-
cified by neighborhood filter bases % (x) satisfying #(x): ¥ (x,) < % (x,);
and that #(z,) < %(xz,) characterizes the regular spaces. For this case
the equivalences announced go back to Birkhoff [2]; for a particularly
lavish treatment see Grimeisen [7].

By a uniform convergence space 1 shall understand a set X equipped
with a convergence on X X X, the convergent families now being called
untformly convergent () and the functions on X whose extensions to X X X
preserve them wuniformly continuous.

One can make correspond to each uniform convergence space an
(ordinary) convergence space by taking for the families convergent to
x, for example, the projections on the first factor of those uniformly con-
vergent families whose other projection is {{z}} (on the assumption there
are such for every x). Then every uniformly continuous function is con-
tinuous and every convergence space can be “uniformized” with a weak-
est convergence.

Given quite generally convergences C(x) on the uniform convergence
space X, I propose for the C(z, y) with respect to which uniform .# and
Z convergences are to be defined the products (defined in the obvious way)
of an element of C(x)and one of C(y) (8). If {{x}} e C(x), then there cor-
responds to a uniform £ (#) convergence an ordinary . (#) convergence.
The proof hinges on passing from # () e C (x(t)) to F (1) x {{x}} e C (2 (1), ).

I shall again restrict myself to translating only a few of the general
considerations to this setting: Assuming C*, C’, and C(z,y) of neigh-

(7) Not to be confused with the convergence, uniform in A, of a set (T, #, %) of
families in a convergence: In case the convergence criterion is couched in terms of
the image of the family in the space (as, for example, for neighborhood type) the
latter may be defined as the convergence of {| Ja*(4): A e#F}

1

(8) In order to have the C(x, y) of neighborhood type when the C(x) are, one
should instead take the families on X x X whose projections belong to C(x) and C(y)
respectively, i.e. the strongest convergence space on X x X making the projections
continuous (for filter bases these are just the families cofinal in some product):
indeed, #(x)x {X}uw {X}x %(y) (for filter bases % (x)X %(y)) is a neighborhood
family for C(z, y). What follows can be carried through for this choice of C(x, y)
with only the slightest modification.
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borhood type, C* is a uniform # convergence if and only if #(z,y):
U* < %'; a uniform # convergence if and only if %’ << #*. The left sides
are respectively the neighborhoods in X X X equipped with the C(z, y)
of the #* (if one defines a neighborhood of a set to be any union of
neighborhoods of each of its points) and the closures of the #’'. More parti-
cularly, if {{(x, ¥)}} < %(«, y), a uniform convergence on X is an .# or #
convergence with respect to itself according as the neighborhoods or
the closures of its uniform neighborhoods generate its uniform conver-
gence. Davis [6] has shown that the convergence of a topological space
corresponds to the uniform convergence defined by the family of open
neighborhoods of the diagonal in the product space exactly when open
sets contain the closures of their points. Similarly, the convergence of
a regular topological space corresponds to the uniform convergence of
closed neighborhoods of the diagonal in the product space. Indeed, given
xye U open, there exist open V, W with 2peW <« W «¢ V <« V < U; then
XX(X—W) o VxX is a closed neighborhood of the diagonal (if ¢V,
reX—W < X—W) which intersects X X {x,} in ¥ X {w,}.

The translation: If f is uniformly continuous for the C’ on a uniform
# convergence X to a uniform # convergence Y and f(C(x)) = C(f(x))
(i.e. f is continuous for the ordinary convergence defined by the C), then f
is uniformly continuous for the C*. This yields the classical result when C’
is C* restricted to a subspace, except for the possibility of extending f,
if initially defined only on the subspace, so as to satisfy the hypothesis.

To accomplish this I shall assume {{(a:, m)}} ¢ C* for every xe X, whence
every family both of whose projections belong to C(x) is an element
of C'(®). This is true in particular of # X&' with #, % ¢ C(x); setting
F = %' yields something appropriately called the Cauchy condition;
while if conversely every Cauchy family belongs to some C(x), C' may
be called complete.

Parenthetically, the completeness of a completion follows from: Let
C* be a uniform # convergence with respect to C’, C(x) and let C*(z,)
be an ordinary # convergence with respect to C(x,), C(z). If every C’
Cauchy family belongs to some C*(z), then so does every C* Cauchy
family. Indeed, if & is C* Cauchy choose any &% (t)eC’(w(t)); then
FOXFA): FXF =F): FXF{): FeCy F(1): FeC*(0), FeC*(x).

Now a uniformly continuous function preserves Cauchy families:
therefore if Y is complete, # e C(x) will imply f(#)eC(y) for some y.
Moreover #'eC(x) implies f(F)Xf(F')eC’; if from this one could con-
clude f(#')eC(y), then, with y = f(z), f is extended as desired. This
will be so for example if # XF'eC’ is symmetric and transitive for fa-
milies on Y and C(y) is the ordinary convergence corresponding to C'.

(°) In the strongest # convergence the converse holds as well. The alternate
definition of footnote (8) is being used here.
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If convergence is a function only of the image family in the space,
transitivity follows from the closure of C’ with respect to (the extension
to families of) relational composition (written o by Bourbaki). In this
case previous criteria can also be given an alternative form in view of (1)
o(F(t): F = (#F () x{t})): {T}oF (here o maps P(X xT)xP(T) into
#(X)); for uniform convergence spaces the identity

[7:F (8) X 7, F (1) ]: F = (mF (1) X {}): {T}oFo ({t} xm,F (¥)): {T}
should be used. Moreover,
o(F'(1): F = (aF' ) xaF (1)): {TIox(F (1)): F

and

(meF" (1) X m,F' (1)): F
= (maF' (1) X 0 F (1)): {T}o F (t): Fo(m,F (t) X m, F ' (1)): {T}

show that the weakest # and strongest .# (uniform, or corresponding
ordinary) convergences coincide if for example in addition to the above
hypotheses C’ is of neighborhood type and the C(x) consist of Cauchy
families.

In conclusion I shall treat an application to the completion of ab-
stract metric spaces developed jointly with R. De Marr.

For families on a complete lattice £,

limsup(limsupw) < limsupw;
F F(b) Flt)y:F
therefore the convergence to the smallest element 0 in 2 is #. with respect
to itself and the C(w) of those # whose lim sup is w(!!). It follows that
an Q-valued function g, continuous for C’' on X, will be continuous for
the weakest # convergence C* with respect to convergences C(z) for
whose elements
limsupe = o(x).
e(¥)
In particular, a continuous ¢ extended to an overset by this equa-

tion (of course lim sup must then have the same value for all & eC(x))
o)
will be continuous for the weakest # convergence.
For a ¢ satisfying ¢ (C(x)) = C(e(wx)) the convergence induced by

o (i.e. the strongest for which it is still continuous, is S or # according

(19) Throughout {7} may be replaced by # if the latter is a filter base.
(1) DeMarr has proved a partial converse. Since {{w}}e¢C(w) it is even
weakest 4.
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as the convergence in the image space is. The convergence to 0 in Q will
be S provided the infinite distributive law

VAo, 4) = A Vw(t7 A(t))

t F(@)

)t(.f(t) t

holds ([2], p. 146, Eq. (22'); this is always the case for a linearly ordered
set), at least cofinally in % whenever

limsup A w(¢, 4) = 0.
F T F

In this case the convergence of an overset which is both 4 and #
with respect to the convergence induced by o on the subset is itself in-
duced by the extended p.

More particularly, let 2 be equipped with a binary operation -+ which
is commutative, has 0 as unit, and for which

limsup (o (¢) + ' (t')) < limsup w(¢)+limsup o’ (#'),
FxF F F

at least when one of the summands on the right is zero; and let ¢ be
a function of two variables (thus making X into a uniform convergence
space) satisfying the usual metric axioms. If the projections of the family
F on XXX converge for the underlying ordinary convergence to
and 2’ respectively, then

e(z,2') = lim;upe;

this justifies the choice of C(w) above.
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