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THERE ARE ABSOLUTE ULTRAFILTERS ON N
WHICH ARE NOT MINIMAL

BY

A. KUCIA axp A. SZYMANSKI (KATOWICE)

In our previous paper [6] we have distinguished absolute P-points
in N* = BN\ N and we have proved that a known consequence of Martin’s
Axiom (MA), called Booth’s Lemma (BL), implies the existence of 2° points
in N* which are both absolute and minimal in the sense of Rudin-Keisler
(RK) ordering. The aim of this paper is to show that there are 2° absolute
points in N* which are not minimal. We also prove Rothberger’s Lemma
which is used in the proof of the main theorem.

1. Preliminaries. In what follows N denotes the set of positive inte-
gers with the discrete topelogy. The remainder N* of the Cech-Stone com-
pactification of N consists of free ultrafilters on N. An ultrafilter z € N*
is said to be absolute (absolute P-point of N*) if it has a base linearly order-
ed by the relation: A < B iff AN\B is finite and B\ A is infinite. An
ultrafilter x € N* is said-to be an m-ultrafilter if for any subfamily R of x
of cardinality less than m there exists an element B of x such that B<< 4
for each A from R; N,-ultrafilters are usually called P-points of N*, and
absolute points are c-ultrafilters in this terminology. Let us note that
there exist m-ultrafilters on N which are not m*-ultrafilters for each regu-
lar m, Ny < m < ¢, whenever MA holds (see [9] and [10]). The number ¢
is the greatest number m for which m-ultrafilters can exist on N. Another
description of absolute ultrafilters can be stated in terms of c-towers
(Hechler [5]), i.e., of the decreasing families (in the sense of the relation <
introduced above) of cardinality c¢; an absolute ulirafilter is an ultrafilter
having a c-tower as a base. An ultrafilter x € N* is said to be RK-minimal
if it is & P-point and if for any finite-to-one map f: N — N there exists
a member A of x such that f| A is one-to-one. Blass proved [1] that MA
implies the existence of 2° points in N* which are minimal, and the exist-
ence of P-points which are not minimal. In this paper we use only the
following consequence of MA (see Booth [2]):
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BL. If & is a fillerbase of fewer than c infinite subsets of N, then there
exists an infinite subset T of N such that T < A for A € .

As claimed by Kunen and Tall [7], BL is essentially weaker than MA.

2. Generalization of Rothberger’s lemma. The lemma which follows
18 a generalization of a known Rothberger’s lemma [8]. This iemma says
that the non-existence of w,-limits implies the non-existence of (w,, w,)-
gaps on N if we pass to the terminology which is widely used (see Tall [11]
or Engelking [4] for the review of results).

LemmA 1 (BL). If & is a filterbase on N such that card F < ¢ and
{H,, H,, ...} i3 a sequence of tnfinite subsets of N such that H, < F for n e N
and F € &, then there exists an infinite subset B of N such that H, < B< F
for ne N and F € #.

Proof. Without loss of generality we may assume that sets H, are
mutually disjoint. Let {F;: 8 < a}, a<¢, be a well ordering of #. We
define, using BL, a free fllterbase {Tp f< a} on N so that, for any B,
B < @, and for any n e N,

(*) the k-th member of H, belongs to ¥, whenever k is greater than
the n-th member of T',. \

The m-th member of a subset A of N is the m-th member of A in the
natural order of N. \

We proceed by transfinite induction. \

Since H,\ F, is finite, there exists a ¢ in N such that the k-th member
of H, belongs to F, whenever k is greater than 2. We can choose these t’s
to form an increasing sequence. Let T, = {t7, t° e}

Suppose that 7', for y < #, where § < a, are already defined. From BL
it follows that there exists an infinite subset 4 of N such that 4 < T,
for y < B. Since H,\F, is finite, there exists a #) € A such that the k- th
member of H,, belongs to F, whenever k is greater than t2. We can choose
these t2’s to form an increasing sequence. Let T, = {#,14,...}. Clearly, T,
satisfies (x) and {T;}U{T,: y < B} is again a filterbase, T, being an infi-
nite subset of A, and A < T, for all y < B.

Thus the filterbase {T;: f < o} is defined.

Applying BL to that filterbase we get an infinite subset 7' of N such
that T < T, for f < a. Since sets T\ T, are finite, the 2n-th element of T
i8 greater than the n-th element of T, for all but finitely many » from N.

Let B, be a subset of H, consisting of elements beginning with the
m (k)-th one, where m (k) is equal to the 2k-th element of 7. Let '

B = | J{By: ke N}.

For each n e N, sets H \B and H,\B, are equal and are finite
(H,’s being mutually disjoint). Therefore, H, < B for each n € N.



ABSOLUTE ULTRAFILTERS ON N 31

For each §, f < a, there exists a k(f) € N such that B, is contained
in ', whenever k > k(B). To get such a k(B), let us recall that B, consists
of elements of H, beginning with the m(k)-th element, where m (k) is the
2k-th member of 7. In view of (x) these elements are in F'; whenever m (k)
is greater than the k-th member of 7T;. However, all but finitely many
2k-th members of T’ are greater than the k-th elements of 7';. We choose
k(B) to be such that, for k > k(B), the 2k-th member of T is greater than the
k-th member of T, and this number is the desired one. We have B, < F,
fork € N, since B, < H, and H, < Fy. Thus | {By: k< k(B)}\F, is finite
for each f. Since B,\NF; =@ for k> k(B), B\F, is finite. This means
that B< F,;.

3. Lemmas on large filterbases. For the purpose of our main theorem
we consider N to be a union of disjoint and finite subsets, N = X,uX,u ...,
such that the sequence {card X,,: » € N} tends to infinity. Let us fix such
a decomposition of N. Let f: N — N be the map assigning to each element
of X, the number n. In order to avoid misunderstanding we denote by X
the copy of N being the domain of f. Thus we have X = X,uX,u ...
We construct on X an ultrafilter x which has a c-tower & as a base (i.e.,
which is absolute) and such that for each 4 € # the sequence card (4 NX,,)
tends to infinity if » runs over an infinite subset B(A) of N. In view of
the last property, the map f: X — N cannot be one-to-one on elements
of x. Construction of the tower # goes by induction over ordinals less
than ¢, and in each step of the induction, passing from a to a+1, we can
construct the (a +1)-st member of & in at least two ways. Thus we get 2°
of such points. '

For the brevity, a subset X’ of X will be called large if

limsupeard(X'nX,) = oo
and it will be called large relativelg) to A, where A is an infinite subset of N, if
d lim card (X’ nX,) = oo.

ned
A filterbase # on X will be called large if each F e & is large relatively
to some infinite subset of N.

LeEmMMA 2 (BL). If & is a large filterbase on X such that card# < ¢,
then there exists an infinite subset B of N such that each F € F is large
relatively to B.

Proof. For any F € # and any k € N, consider the subset B;, y of N
congisting of those n for which card (FnX,) > k. Since # is large, the sets
B, r form a filterbase, and gince card# < ¢, there exist less than ¢ elements
in that base. Applying BL, we get an infinite subset B of N such that
B < B,y for any B, p. This means that limcard(FnX,) = co when-
ever n runs over B, i.e., F is large relatively to B.
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LeEMMA 3 (BL). If # is a free filterbase on X such that cardF < c,
then there exist an infinite subset B of N and a sequence x = {xr,: n € B},
xz, € X,, such that x < F for each F € ¥.

Proof. Applying BL to the filterbase # we get an infinite subset ¢
of X such that C < F for all F € #. Let '

B ={neN: (nZX, #0}.

In each CnX,, where n € B, take a point x,. The sequence x
= {x,: n € B} and the set B satisfy the lemma.

LeMMA 4 (BL). If &# is a large filterbase on X such that card# < c,
then there exists an infinite subset T of X such that T < F for all F € F,
and there exists an infinite subset B of N such that T is large relatively to B.
In particular, L {T} is a large filterbase on X.

Proof. Applying preceding lemmas, we define, by induection, se-
quences z!, z2, ... and infinite subsets B,, B,,... of N such that

(1) #*: B, - X,

(2) a*(n) € X,,,

(3) B, > B; o ...,

(4) the sequences #* are mutually disjoint,

(5) 2* < F for each ke N and for each F e &,

(6) each F € # is large relatively to B,.

To get 2! and B, we first apply Lemma 2 to ¥ and get an infinite
subset B’ of N such that each F € & is large relatively to B’. Next, apply-
ing Lemma 3 to

F' ={FnU{X;: keB'}: FeF}

we get the derired infinite subset B, of B’ and a sequence #* = {z,: n € B,}.

Assume that the sequences z!, 2%, ..., 2" and infinite sets B, ..., B,
of N are defined in such a way that conditions (1)-(6) are satisfied.
By Lemma 3 applied to

X" = U {X,: ke B }\(wtuz?u ... Uz"),

instead of to X, and to the large filterbase {FNX": F e ¥} on X" we get
an infinite subset B, ., of B, and a sequence z"*': B, , - X" such that
2"t (m) e X,,\(z'U ... Uz™) for m e B,,, and such that z""'< FnX"

Thus the sets B, o B, o ... and the sequences z', 2°, ... are defined.
We have 2* < F for each k€ N and F € #. By Lemma 1, we get a subset T
of X such that ¥ < T < F for each k € N and F € #. The set T is large rela-
tively to an infinite subset B of N, which is almost contained in every B;.



ABSOLUTE ULTRAFILTERS ON N 33

For each ke N there exists me N such tiat a'(n)eT if neB, n >m,
and 1 =1,...,k So cardTnX, >k for neB and n>m.

MAIN THEOREM (BL). There exist 2° ultrafilters on N which are absolute
but not minimal.

Proof. Let X = X,uX,U ... be a decomposition of the set X of
positive integers into finite sets such that limcard X, = oo. Let f: X+ N
be the (finite-to-one) map assigning to each element of X, the number n.
As sketched in Section 2, the proof consists on a construction of
2° c-towers being bases for large ultrafilters on X.

Let {R,: a << ¢} be a well ordering of the family of all infinite subsets
of X. Note that if a free filterbase {F,: a < ¢} is such that for each a
one of the sets F,NR, and F \R, is empty, then it is a base for an ultra-
filter.

To construct the required c-towers, we proceed by induction. We
construct families {8,: a < ¢} of infinite subsets of X such that:

(1) each member of 8, is large relatively to some subset of N and
each two members of §, are almost disjoint (i.e., they have an empty
or finite intersection); for n € N each element of 8, is contained in the
set X, ,UX, ,U...;

(2) if B < a, then §, is < -refinement of S, i.e., if T € §,, then there
exists a U in §; such that T < U;

(3) for any a< ¢, if L is a filterbase consisting of members of the
families 8, with f < a, then there exist two different members T7, and
T} of 8, such that T; < T and Ty < T for any member T of L;

(4) for each a, if T € §,, then one of sets TNR, and T\ R, is empty.

Let 8, = {R,} for R, large relatively to some subset of N, and let
S, = {X\R,} in the opposite case.

Assume that the families S, for f < a, where a < ¢, are already de-
fined. Let L be a filterbase contained in (J {S;: f < «} and such that
Ln8,; # @ for B < a. Since each element of §; is large relatively to some
subset of N, the filterbase L is large. By (1), the filterbase I has exactly
one member in each 8;; in particular, cardinality of L is less than c. By
Lemma 4, there exists a subset 7' of X which is large relatively to some
subset of N and such that 7' << F for each F € L. Divide T into two sets 7"
and 7", disjoint and large relatively to some subsets of N¥. One of the
sets T'NR, and T'\ R, is large relatively to some subset of N. Choose that
one and denote it by 7. In an analogous way choose T;. The families
Lu{T}} and LU{T;} are filterbases on X. Define §, to be the family
of all sets T; and T; chosen for arbitrary filterbases L contained in
U {8s: B < a} and such that LNS; # O for f< a.
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The construction of S, assures that conditions (1)-(4) are satisfied for

B < a if they are satisfied for f < . Having the families §,, a < ¢, with
properties (1)-(4), we get 2° selectors each of which is a filterbase. By (4),
each of them is a filterbase for an ultrafilter on X. Being a c-tower, by (2),
it is a base for an absolute ultrafilter.
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