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1. Introduction, notation and terminology. Throughout G denotes a
complete Hausdorff topological Abelian group, R stands for a ring of sets,
and R for a subfamily of R closed under finite unions. It is a consequence of
a result due to Traynor [5] that every locally exhaustive additive set function
pu: R =G can be uniquely decomposed in the form u = p,+p,, where
y, H2: R —G are locally exhaustive additive set functions, u, is (inner) K-
regular, and u, is S-antiregular (see the proof of Theorem 2 below). Earlier
related results can be found in [2] and [3]; see also [6], (3.6) (a). The aim of
our paper is to give explicit formulae for y, and pu, (see (5) and (6) below).

For every SR and AeR we set

GA={B€6| BCA}.

For every A€R we denote by A4(A) the family of all finite partitions of
A contained in ‘R, and we define an order relation <X on 4(4) by setting
3 <M if for each BeW there exists Ce3 with B < C. Clearly, 4(4) is
directed by <.

Let BeNR, and 3e€4(A). If B is the union of a subfamily of 3, we write

Js=1{CeJl C = B}.

Throughout U denotes the family of all closed symmetric neighbour-
hoods of 0 in G. For U el we put

U™ =U+...+U (n summands).

An additive set function u: R =G is called
locally exhaustive if u(A,) =0 whenever (4,) is a disjoint sequence in R,

and AeNR;
o-additive if -

S w4y ~u(U 4)
m=1 meN

whenever (4,,) is a disjoint sequence in R with | 4,€R;
meN
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K-regular if given AeR and Ue€ll there exists KeR, such that

We set

ea(N: G) = {u: R G| p is additive and locally exhaustive}.

In the sequel, u always denotes an element of ea(‘R; G).

A ring topology T on R is called an FN-topology if it admits a base of
neighbourhoods of @ consisting of hereditary subfamilies of R (see, e.g., [5],
1.3). We say that T is S-regular provided for every Ae€R and every I-
neighbourhood W of @ there exists K e 8, with R, = W.

We denote by I, the weakest FN-topology on R with respect to which
p is continuous. Then I, is W-regular if and only if u is N-regular.

Finally, we say that u is locally I-singular, where I is an FN-topology
on N, if, given AeN, U ell and a I-neighbourhood W of @, there exists
BeWN, with u(Mp) < U and A\BeW (cf. [5], 1.4, and [6], pp. 472-473). If
T = I,, where veea(R; G), then u is said to be locally v-singular.

2. Results. We start with an essentially known and easy (cf. [1], 1.5.17)

LeMMA 1. For every A €N the net {u(K)| K € R,}, where the index set is
directed upwards by inclusion, satisfies the Cauchy condition.

Using Lemma 1, we can define for every Ae‘R
¥, (A) =lim {u(K)| KefRK,}.
Moreover, we put for every 3e4(A)

¢u(3) = Z l/l,,(Z).

Zeld

LEMMA 2. Let A€R, let 3=1{Z,,...,Z,}€4(A) and let U€elW. Then
there  exist K,-eﬁzl., i=1,...,n, such that for every M

={M,, ..., M, }€A(A) with M > 3 we have
[1( U Lj\ U K.-)GU whenever Lje‘“Mj’ j = l, R UB
=1 =1
Moreover, ¢,(S)eU whenever Sed(D) and

€= {Z\K)AD, ..., Z\K)AD. and Dc ) Z\K, DeR.
i=1

Proof. Choose Vell with V™ c U and K; e &;, with
#(L)—u(K)€eV whenever K;cLeRz, i=1,...,n
(see Lemma 1). Put N(i)) ={1 <j<m M;nZ; # Q}. We have
Z,= U M, '

JjeN()
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and
#( U =u( U LivK)\K)eV.
JGN(I) JjeNG)
This yields the first part of the assertion. The second part is an easy
consequence of the first one.

LemMMA 3. For every A €®R the net {¢,(3)| 3€4(A)} satisfies the Cauchy
condition.

Proof. We assume the contrary. Then there exists V €l such that for
every 3€4(A) we can find Mea(A4) with M >3 and

(%) ¢, (M—0,(3J¢V.
Choose V, €l with V§» < V and.V,,ell with ) ¥, < ¥,. We shall construct,
k=1

by recursion, K,e\, and 3,€4(4\K,) such that for every neN the
following three conditions hold:
(1) K,> Kyiy:
(i) u(K,\Kn+1)¢7Vo:
(i) @, (M —¢, (3 € Z V, whenever Med(4\K,) and M > 3,.
Clearly, (i) and (ii) contradlct the local exhaustivity of u as K, < A.
By Lemma 1, choose K, € \, with
(k) —pm(Sek,) = W

and 3, €4(A\K,) arbitrarily.
Suppose now the construction has been carried out until some neN.
Applying (») to 3,u {K,}, we obtain 3 e4(A) with the following properties:

373 iK,p and ¢, (J—(4u(3n)+u(Kp)¢ V.

We have 3l = {B,, ..., Bn}. Choose Well with W+Wc V,,,. By Lemma
2, applied to :-{l,('l and W, there exist L.-E“B,-, i=1,..., m such that

(1) 3 Ua(B)= 3 wlL)EW,
2 $,(S) €W whenever 3= B,\L,, ..., Bo\Ly).
Put
K,.i= -Q L.
and i

3n+1 = 3,,U {Bl'\Lls ey Bm\Lm}
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Clearly, 3,,,€4(A\K,.,) and (i) holds. By the definition of B;’s and K,.,,
we have

6.(D = 6(aw)+ 3. Vo (B),

i=1
whence, in view of (1),

Gu(J) — b (Jlawk,) —1(Kps1) €Vo.

By (i) and our choice of 3, we have

¢u (:;IA\K,,) - ¢u (3:-) € Vo-
It follows that

¢u (3) —(¢u (31-) + ”(Kn+ l)) € VO + VOs

which yields, in view of our choice of 3, (ii) for n+1.

In order to check (iii), fix Med(4A\K,+,) with M> 3,,,. We have
M| 1k, > 3u» SO that, by the inductive hypothesis,
) Bu(Mlaw) = 9u(30€ T, i
Since

K\Kper = U (BA\L),

we get, in view of (2) and M|y k., Z Sn+1lk, K, 4 40
@ Gu (Mg k)~ Pu( S alk, ks ) EVasr

Summing up (3) and (4), we get (iii)) for n+1.
Using Lemma 3, we can define set functions

Brs bar: R G
by the formulae
(5) () =1lim {, (I Jed(4)},
(6) Har (A) = p(A4)— 1, (4)

for every AeR.
LemMma 4. Let Ae€R and V€. Then there exists K € R, such that

w(A)—p(K)eV and p(Rox) < V.

Proof Choosing Uel with U+UcV, we find Jed(4), 3
=1{Z,, ..., Z,}, satisfying p,(A)—¢,(3)eU. Let K; € R, be given by Lemma
2. Put

K = U K‘.
i=1
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Then, in view of that lemma, ¢,(3)—p(K)eU. It follows that pu, (A)
—u(K)eV.
Fix DeR, x and let Med (D) satisfy

M>{(Z,\K,) D, ..., (Z,\K,) D).

Then, in view of Lemma 2, ¢,(M) €U, so that u (D)eU.

THEOREM 1. For every peea(R; G) we have p,, u,, €ea(R; G), and u, is
W-regular. Moreover, u is R-regular if and only if u=y,.

Proof. We first show that u is additive. Let 4, BeR be disjoint. Fix
V ell and choose U el with U™ < V. There exists 3,€4 (A U B) such that

w(AuB)—¢,(3)eU  whenever 3e4(AuUB) and 3 > 3.
Fix M, e4(A) and Ny, ed4(B) with P, U N, > 3, and
W (A)— @, (M)eU  and  p(B)—¢,(Ro)eU.
It follows that
(AU B)— (1 (A)+ 11, (B) €U c V.

Since V is arbitrary, this yields u, (A4 U B) = u,(A4)+ i, (B).

As u is locally exhaustive, it follows easily from Lemma 4 that g, is also
locally exhaustive. The R-regularity of u, follows also immediately from
Lemma 4.

Finally, suppose p is R-regular. Then y,(4) = u(A4) for every Ae®R.
Hence ¢,(3) = u(A) whenever AeR and 3e€4(A). This yields pu,(4) = u(A4)
for every AeR.

Remarks. 1. If R is a d-ring of sets and u eea(N; G) is o-additive, then,
in the definitions of ¢, and yu,, one can replace 4(A4) by the family of all
countable partitions of 4 contained in R. Moreover, u, and pu, are o-
additive.

2. The second assertion of Lemma 4 states, in the terminology of [4],
1.3 (local setting), that u, is locally nearly supported on ! Moreover, if K is
an ideal of R, then g, (8) = {0}. Thus, the decomposition considered in this
paper is then a local version of Traynor’s decomposition ([4], Theorem 1.7).

The next three lemmas will serve us to prove that u, and pu, are, indeed,
the K-regular and the R-antiregular components of u in the sense of Traynor
[5].

LEmMA 5. If u,veea(R; G), then

(a) '/’(u+v) = ¢u+¢vi

(®) (u+v), = s +v,, (B+V)ar = Har+ Var.

LEMMA 6. Suppose u,, u,€ea(R; G) and pu= p,+pu,. If (1), = p, and
(u2), =0, then py =y, and p, = p,,.
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Proof. By Lemma 5 (b),

b = (py +pa), = (1) +(12), = 1y

It is worth-while to note the following assertion, even though it will not
be used in the sequel.

ProrosiTiON. If peea(R; G), then

@) () = M, (Hardar = Har+
(b) ()ar = 0 = (),

Proof. The first part of (a) follows from Theorem 1. The remaining
assertions can be deduced from this and Lemma 5 (b).

LemMma 7. If u is locally u,-singular, then pu, = 0.

Proof. Let AeR and Vell. Choose U el with U+ U < V. By assump-
tion, there exists BeR, such that

u(Rp) =U and p(Rep) <U.

Then, obviously, u,(Rg) < U, whence u,(A)eV. Since V is arbitrary, we
conclude that u,(A) =0.

THEOREM 2. Let ueea(R; G) and let I, be the strongest K-regular FN-
topology on R. Then u, is locally I,-continuous and u,, is locally ¥,-singular.

Proof. That I, exists follows from the simple observation that the
family of W-regular FN-topologies on R is closed under arbitrary suprema.

By Traynor’s decomposition theorem ([5], 6.3), there exist (uniquely
determined) py,, u, €ea(R; G) such that u, is locally I,-continuous, u, is
locally I,-singular, and u = pu, + p,. Thus, it is enough to show that u, =y,
or, in view of Lemma 6, that (u,), = u, and (u,), = 0. The first assertion
follows directly from Theorem 1 as u, is R-regular. The same theorem yields
that (u,), is SK-regular, so that u, is locally (u,),-singular. Accordingly, the
second assertion is a consequence of Lemma 7.

Remark. 3. In the case where G = R, the additive group of the reals
with the usual topology, the decomposition considered in this paper coin-
cides with the Riesz decomposition in the Dedekind complete Riesz space
ea(R; R) with respect to the band of K-regular elements of ea(R; R). Indeed,
u, veea(R; R) are orthogonal if and only if u is locally v-singular.

We wish to thank Prof. C. Constantinescu for valuable discussions and
the referee, Dr. Z. Lipecki, for helpful suggestions.



GROUP-VALUED SET FUNCTION 97

REFERENCES

[1] C. Constantinescu, Spaces of Measures, Walter de Gruyter, Berlin-New York 1984.
[2] R. A. Johnson, Some types of Borel measure, Proc. Amer. Math. Soc. 22 (1969), pp. 94-99.

[3] S. Ohba, The decomposition theorems for vector measures, Yokohama Math. J. 19 (1971),
pp. 23-28.

[4] T. Traynor, Decomposition of group-valued additive set functions, Ann. Inst. Fourier
(Grenoble) 22.3 (1972), pp. 131-140.

[5]1 — The Lebesgue decomposition for group-valued set functions, Trans. Amer. Math. Soc. 220
(1976), pp. 307-319.

[6] H. Weber, Topological Boolean rings. Decomposition of finitely additive set functions, Pacific
J. Math. 110 (1984), pp. 471-495.

MATHEMATIK, ETH-ZENTRUM
ZORICH

Regu par la Rédaction le 30.6.1986

7 — Colloquium Math. 56.1



