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In this note we give two theorems characterizing convergent se-
quences in the dual of certain K{M,}-spaces (see [3], Chapter IIT for
material on K{M,}-spaces). Theorem 6 gives a characterization in terms
of the usual representation of elements in K{M,}, when {M,} satisfies
conditions (M), (N) and (P) (see [3], IL. 2.3 and 4.2); this result is some-
what analogous to the convergence criteria for &’ given in Theorem 56,
Chapter 3 of [2], and to the convergence criteria for H, given in Theorem 3
of [8]. Theorem 7 gives a characterization in terms of regularizers. There
do not seem to be any results analogous to Theorem 7 recorded, even
for the case where K{M,} = <.

First, we recall some facts pertinent to K{M,}-spaces. Let {M,}
be a sequence of extended real-valued functions defined on R™ such that
1< My(2) < My(x) < ... It is further assumed that at each point xe¢ R™
all the M, (x) are finite or infinite. If § = {x: M, (2) < oo, p > 1}, it is
assumed that M, restricted to § is continuous. An infinitely differentiable
function ¢ defined on R™ belongs to K{M,} if

(1) D(x) =0 for ¢ 8 and any multi-index a,
(2) M,D% is a continuous bounded function on 8 for 1 < p < oo and
0< |a| <p.
The vector space K{M,} is then given the locally convex topology
generated by the norms

(3) gl = sup{M,(#)|Dp(x)|: e 8, |a| <P} (QA<p< o).

We will only consider K{M,}-spaces which satisfy three further
conditions. The sequence {M,} satisfies the following conditions:

(M) Each M, is quasi-monotonic, i.e., for |z;| > |#;| and x; and z;
having the same sign,

’ ”
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(N) For each p, there exists an integer p’ > p such that the quotient
M, (x)| M, (x) = My, (x) is summable on R™ and my, (z) -0 as I.’v[—>oo
(Here it is understood that the quotient oo/oco is 0.)

(P) For ¢ > 0 and p an integer, there exist p’ > p and N such that
M,(r)< eM,(x) if || >N or M,(z)> N.

Many of the familiar test spaces are K{M,}-spaces which satisfy
conditions (M), (N) and (P).

Example 1. For K < R™ compact, set M, (x) =1 if v« K and
M,(x) = oo if x¢ K. Then K{M,} = D (see [5]), and {M,} satisfies (M),
(N) and (P).

. Example 2. If M,(x) = (1+ |2|)*, then K{M,} = & is the space
of rapidly decreasing functions [5]. { M} is easily seen to satisfy conditions
(M), (N) and (P).

Example 3. If M, (z) = exp(py(x)), where y(x) = (1+ |#|2)"?, then
K{M,} is the test space >, of [9]. Again conditions (M), (N) and (P)
are satisfied.

Example 4. Let {r;} be a sequence such that 0 < r, <7, < ... <7
and r;—>r. Set M,(t) =exp(r,|t|) for te R. In this case K{M,} _—H as

[8], and {M,} satlsﬁes condltlons (M), (N) and (P).

In section I1.4.2 of [3] it is shown that the sequence of norms

(4) gl = sup [ My (@)|D°p(@)|dz (p>1)

generates the same locally convex topology on K{M,} as the sequence
{Il ll,} given in (3). (Here [f(x)dz denotes the integral of f over §.) T
obtain our first result we consider another sequence of norms. Note that
since my, in condition (N) is sumimable over R™ and m,,,. () — 0 as |@| - oo,
we infer that m,, ¢ I*(R™). If e K{M,} and |a| < p, then

M, (2) | D°¢(@)] < My (2) lipllpr

where p’ is given by (N), so that M, D°¢ is in L*(R™). Thus we may consider
the sequence of norms given by

a /2
(5) Ioll.2 = sup ([ (M,(@) 1D ¢ (@))'ds)™  (p>1).
(Similar L*-type norms are considered in Theorem 7 of I. 3.6 of [4].)
First, we show that the sequence of norms in (5) is equivalent to the
sequence of norms in (3).

LeMMA 5. The sequence of norms {|| |,} is equivalent to the sequence of

norms {|| .2}, i.€., the two sequences generate the same locally convex topology
on K{M,}. '
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Proof. Given p and a with |a| < p, we have, for pe K{M },

[ M3 ()| D*g ()" de < sup M}, (2)| D ( (@) [ m}, (2) dw,

where p’ is given as in condition (N). Thus there is a constant C, > 0
such that |l@ll, . < C,llpl,-. On the other hand, there is a constant A4,
and a positive integer ¢ > p such that |ip|, < 4,llpll,, (see [3], II. 4.2).
Let ¢’ correspond to ¢ as in condition (N). Then we have, by the Cauchy-
-Schwartz inequality, )

[ My(2) 1D (2)| do < ([miy (@) dw)mUMz )| D% (x)lzdw)m for |a| < ¢

Thus there is a constant B, such that |lpl, < 4,lpll,, < B, ¢l . and
the lemma follows.

Remark. The equivalence of {|| |,} and {|| ||, .} is proved in Theorem 7
of 1.3.6 of [4] with some additional assumptions on the {M }. (See equa-
tion (10) of I.3.6 in [4]; in particular, it is assumed that the M, are
infinitely differentiable.) From the lemma, these additional assumptions
are not necessary.

We now give the first characterization of sequential convergence in
K{M,} .

THEOREM 6. Let {M,} satisfy conditions (M), (N) and (P). The following
conditions are equivalent:

(i) T,—~ 0 weakly (strongly) in K{M,}' (see [3], 1.6.4);

(ii) there exist a positive integer p and, for each multi-index a with
la| < p, a sequence {f, ,}n_, < L*(8) such that

T, = Z( 1) D (M,f.,) and f,,—~0 in L*(8S).
le|l<p

Proof. Suppose T,—0 weakly in K{M,}'. By 1.6.4 of [3], there is
a positive integer p such that

(6) Sup {[KT, @>: pe K{M,}, lpl,: <1} >0 as n—oo.

In particular, there is a constant B > 0 such that [(T,, ¢>| < Bllplly,,
for pe K{M,}. Let I" be the direct sum of a finite number (equal to the
number of multi-indices a such that |a| < p) of copies of L*(8) and equip I
with the norm

Kfoa<all = SUDIfuley ~ Where [Ifulls = ([ Ifa()I? da)™.

le|l<p

Define a map 0 from K{M,} into I" by 0: ¢ - {M, D¢} ,<p, and
note that 6 is one-one. Let 4 be the image of K {M,} under 6, 4 the closure



152 L. KITCHENS AND C. SWARTZ

of 4 in I', and AL the orthogonal complement of 4 in I'. For each =,
define a linear functional L, on 4 by <{L,, 0(¢)> = {T,, ¢). Since

<Ly, 0(})] < Blipllp,. = BllO(@)ll,

L, is continuous. We extend L, to a4 by continuity, and then to I' by
setting <(L,,g> =0 for ge AL. This extension, which we continue to
denote by L,, has the same norm as L, over 4. But, by (6), |IL,|| -0 in I'"
as n—oo. By the Riesz Representation Thegrem, for each =, there exist
functions {f,,: la| < p} = L*(8) such that, for each G = {go}q<pe I

Ly @ = Y [fun@ga(@de  with |Ll= 3" [fanll-

lel<p lai<p

In particular, for pe K {M,},

Ly 0@)) = Ty 9> = D [fon(@) M, (2) Dp(w)d
lal<p
or-
T, = > (=1 D(Mpfon)-
lal<<p
Since

ILall = Y fo,nlls—>0,

(ii) is established.
To show that (ii) implies (i) note that, for pe K{M},

KTy @I < D) [1farn(@)| My (@) D°p(@)ldo < liplly,e D) Ifumle
lal<p laj<p
so that, by (ii), T,—~0 weakly in K{M,}'.

Remark. The proof of Theorem 6 presented here differs from the
proof of the characterization of convergent sequences in 95 given in [5]
(Theorem XXITIT of Chapter III) or in [2] (Theorem 19, Section 5 of
Chapter 3). The proofs in [5] and [2] seem to rely on using L*-space methods
to extend the linear functional L,, and then obtain the fact that L,—0
weakly in I". By employing the result in 1.6.4 of [3], we obtain imme-
diately that actually L, — 0 strongly in I"'. After making this observation,
we see that it is really not important to use the L*-space. That is, we
could use the norms {|| |, ,} (or {|l Il,}) and let I" be a direct sum of L'(S)
(or C(8)) and obtain a representation as in (ii) with f, e L*(8) and
lim||f, nlle = O (or f,, bounded measures with var(f,,)—0).

‘We now give a characterization of sequential convergence in K { M
in terms of regularizations. For this result we impose an additional con-
dition on the sequence {M_,}. The sequence {M,} satisfies the following
condition:
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(F) Each M, is finite valued, M,(r) = M,(—x) for ¢ R™, and,
for each p, there are p’ > p and C, such that

M,(z+h) < CpM, (2)M,(h) for z,heR™

Problems concerning convolution in K {M }-spaces have been treated
in [7]. In particular, if condition (F') is satisfied, translation is continuous
on K{M,} and regularizations can be formed (see Lemma 1 of [7] and
I11.3.1 of [3]). Recall that if Te¢ 2’ and pe 2, the regularization of T
by ¢ is the function Txg: x— (T, (r_,p) >, where 7_,p: y —>q@(y—x)
and ¢: £ —@(—x). Thus, if Te K{M_} and g2, then T x¢ is an infinitely
differentiable function (see [5], Chapter VI, Theorem XI).

Before stating our result, we introduce some auxiliary spaces. For
each positive integer p, let B, be the vector space of all continuous complex-
-valued functions f on R™ such that

flp = sup{|f(@)|/ M, (@): we R™} < oo.

~ We equip B, with the norm | |,, and note that B, is a B-space under
this norm.

TuEOREM 7. Let {M,} satisfy conditions (M), (N) and (F). The following
conditions are equivalent:

(i) T,—0 in K{M,}' (weakly or strongly);

(ii) condition (ii) of Theorem 6;

(iii) there is a positive integer q such that T\, x¢ — 0 in B, for each pe D;

(iv) there exist positive integers q and 1 and, for each mulli-index a
with |a| <1, there ewists a sequence {f,,} = B, such that

limf,,=0in B, and T,= D> Df,,.
n lal<t
Proof. Since each M, is finite valued from condition (F), condi-
tion (N) implies condition (P) and Theorem 6 gives the equivalence of (i)
and (ii).
Suppose (ii) holds. For ¢e 2, we have

(7) Toxe@) =| Y (=1 [M,(9)funy) D¢ (2 —y)dy
laj<i
< CeMy(@) 3 [My(t)|fon(@—1)| D (1)t
laj<l

< CoMy(@)liplly,s D) 1fanlles

lal<?

where ¢ = p’ is given by condition (F), and the Cauchy-Schwartz ine-
quality has been used. By (ii) and (7), T, ¢ — 0 in B,, and (iii) is established.
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Suppose (iii) holds. To establish (iv) we apply Theorem 3 of [1] with
the space B in this theorem equal to B, as above. By the conclusion of
this theorem, there are a positive integer ! and sequences {f,} and {g,}
from B, such that limf, =limg, = 0 in B, and

8) (Tw ) = [ful@)(1—A(@)p(@)ds+ [g,(@)p(x)dz for pe .
Since f, and g, belong to B,, the map

<p_>ff,, ) (1— 4(@) p(e dw+fgn o(x)de
defines a continuous linear functional on K{M,} (see [3], 1I.4.2), and
equation (8) shows this continuous linear functional agrees with 7', on
the dense set 2 (see [3], I1.2.5). Therefore, equation (8) is valid forpe K {M }
and (iv) follows.
Suppose (iv) holds. We may assume that ¢ > 1 in (iv) since the in-
jections B;— B;, , are continuous. For ¢ K{M,},

KTy 9I< ) [Ifun(@) Dop ()| do

laj<l

< Sup{|fo,n (@) [ My(@)l: ze R™, |a| < U ipllg,1,
so that T,—0 weakly. That is, (i) holds and the result is established.

Remarks. Note that the spaces in Examples 1-4 satisfy condition (F)
so that Theorem 7 is applicable to these spaces.

For' K{M,} = &, the equivalence of (i) and (iv) is recorded in Theo-
rem 56 in Chapter 3 of [2]. (See also the remark following Theorem VI of
Chapter VII of [5].) No analogues of the regularization condition (iii)
seems to be recorded, even for &

For K{M,} = H, as in Example 4, the equivalence of (i) and (iv)
is given in Theorem 3 of [8].

We conclude by mentioning that it might be possible to alter con-
dition (iii) of Theorem 7 somewhat. Note that B, < B, , with the in-
jection continuous. Thus, if we set

B = U B,,
a>1
B may be supplied with the inductive limit topology from the {B,}. If
this inductive limit is regular (i.e., @ set A < B is bounded iff 4 is con-
tained in some B, and bounded in B,), B will be sequentially complete,
and, by the proof of (iii) implies (iv) above, we can replace condltlon (1i1)
with the condition

(iii)’ T,*@ -0 in B for each pe 2.

(See the statement of Theorem 3 in [1].) One possible way of showing
that the inductive limit is regular would be to show that, for each g,
there is a ¢’ > ¢ such that the injection B,— B, is compact (see [6]);
however, we have not been able to establish this.
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