COLLOQUIUM MATHEMATICUM

VOL. LVII 1989 FASC. 2

ON CONFORMAL COLLINEATIONS

BY

W. ROTER (WROCLAW)

1. Introduction. An n-dimensional (n > 4) Riemannian manifold (whose
metric g;; need not be definite) is called conformally symmetric [2] if its Weyl
conformal curvature tensor

1
(1) Chijk = Rhijk - m(ginhk —9ix th + Gni Rij"" gthik)

R

+ m (9:i9n— irGnj)
is parallel, ie., if Cyj, =0.

Here and in the sequel we denote by Ry, R;j and R the curvature tensor,
Ricci tensor and scalar curvature, respectively, while the comma stands for
covariant differentiation with respect to g.

Clearly, the class of conformally symmetric manifolds contains all locally
symmetric as well as all conformally flat manifolds of dimension n > 4.

The existence of essentially conformally symmetric manifolds, i.e., confor-
mally symmetric manifolds which are neither conformally flat nor locally
symmetric, has been established in [15] (see also [16]) as follows:

ExAMPLE 1. Let M denote the Euclidean n-space (n > 4) endowed with
the metric g;,(4, p=1, 2,..., n) given by
grudxtdx* = Q(dx')? +k;;dx'dx’ + 2dx* dx",

Q = (Bkij+cij)xixj,

where i, j=2,3,...,n—1, [k;] is a symmetric and non-singular matrix
consisting of constants, [c;;] is a symmetric and non-zero matrix of constants
satisfying k" c;; = 0 with [k'/] = [k;;], and B is a non-constant function of x*
only. Then M is essentially conformally symmetric.

It is easy to check (cf. Lemma 1, equation (10)) that for every conformally
symmetric manifold the condition

03]

(3) Rijx—Ry, ;= (R,kgij - R,jgik)

2(n—1)
holds.
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An n-dimensional (n > 3) Riemannian manifold (with a possibly indefinite
metric) is said to be nearly conformally symmetric (NCS for short) if its Ricci
tensor satisfies condition (3).

Riemannian manifolds (n > 4) satisfying (3) are also said to have harmonic
Weyl (conformal curvature) tensor ([1], p. 440).

Any conformally symmetric manifold is therefore nearly conformally
symmetric. Moreover, equation (3) shows that every n-dimensional (n = 3)
manifold of harmonic curvature (R;;x = Ry ;) is also nearly conformally
symmetric.

An NCS-manifold (n > 4) is called almost conformally symmetric if it is
neither conformally symmetric nor of harmonic curvature.

The existence of non-trivial NCS-manifolds can be stated [17] as follows:

EXAMPLE 2. Let M = R""'xR. (n>5) be endowed with the metric
a4, p=1,2,..., n) given by

@) gapdxtdxt = ((n—1)x")*" =V f.dxidx! + (dx")?,

where i, j=1,2,...,n—1, and fy(x',...,x""") is an arbitrary non-flat
Ricci-flat metric (which evidently exists if n > 5). Then:

(i) (M, g) is almost conformally symmetric.

(ii) For any (smooth) function p depending on x" only, the metric
g = (exp2p)g is nearly conformally symmetric. Moreover, as one can easily
verify (cf. [17]), the metric

1
g =(exp2p)g with p= mln x"

is of harmonic curvature and is neither conformally symmetric nor Ricci-
-symmetric (R;;x = 0).

Let M be a Riemannian manifold with a (not necessarily definite) metric g.
By an infinitesimal conformal motion on M we shall mean a vector field v on
M such that L, g;; = 24g;;, where L, denotes the Lie derivative with respect to
v (ie, L,gi;y=v;;+v;;) and A is a function on M (clearly, 4 =n"1v" )(}).

If A =const, then the conformal motion is said to be homothetic. If
L,g;; = 0 everywhere on M, then v is called a motion or an isometry.

It is well known that for a conformal motion the condition

h
holds, where A* =g 4..
A vector field v on M is said to be a conformal collineation [19] if it satisfies

condition (5).

() Since all motjons and collineations appearing in this paper are infinitesimal, we shall omit
the word “infinitesimal”.
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It is easy to check [19] that A, = n"'(v",) ;. Hence 4, is a gradient vector
field. '
Condition (5) is equivalent ([8], p. 30) to

(6) Aijx = 2Akgij9; )

a;. being the Lie derivative of g;; with respect to v.

Clearly, every conformal motion is a conformal collineation. The converse
statement fails in general ([19], see also Example 3).

If ‘

L"{ihj} = 0 everywhere on M,

then v is said to be an affine collineation.

Every homothetic conformal motion is necessarily an affine collineation,
but the converse statement is not in general true.

Conformal collineations have been studied by many authors. In particular,
Gebarowski [7] proved by a straightforward computation (see also [17],
Corollary 7) the following result:

THEOREM 1. Let M be an n-dimensional (n > 3) NCS-manifold (with
a possibly indefinite metric). If M is not of harmonic curvature and admits
a conformal collineation, then this collineation is a conformal motion.

As an immediate consequence of Theorem 1, we have

COROLLARY 1. Let M be an n-dimensional (n > 3) conformally flat manifold
(with a possibly indefinite- metric). If its scalar curvature is not a constant and
M admits a conformal collineation, then this collineation is a conformal motion.

The present paper deéls (in fact) with conformal collineations on
NCS-manifolds. Since Theorem 1 and Example 4 give sufficient information on
conformal collineations on NCS-manifolds with non-constant scalar curvature,
we shall restrict our consideration to manifolds of harmonic curvature.

More precisely, Section 3 of this paper deals with conformal collineations
on Einstein manifolds, while Section 4 contains some results concerning
conformal collineations on conformally symmetric manifolds.

Obviously, all manifolds considered in the above-mentioned sections are
of harmonic curvature. Moreover, except for certain classes of conformally flat
manifolds, they are all semi-Ricci-symmetric, i.e., their Ricci tensor satisfies the
condition (cf. Lemma 9) ’

(7) RriR'jkl + R'jR'ikl = O.

Finally, the last section of this paper is concerned with conformal
collineations on analytic semi-Ricci-symmetric manifolds of harmonic cur-
vature (without any additional assumptions).

All manifolds under consideration are assumed to be connected and of
class C* qr analytic. Their Riemannian metrics, unless stated otherwise, are not
assumed to be definite. '
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2. Preliminaries. In the sequel we shall need the following results:

LEMMA 1. The Weyl conformal curvature tensor satisfies the well-known
equations:

(®) Chijx = —Cinj = — Chixj = Cjini

) Chijg+Chjki+Ciij =0, Cijpp=Ci=C5%=0,
n—3 1

(10) Cir = ——5 (Rij,k — Ry, —m(R,kQU— R,jgik)) -

LemMMA 2 ([13], Lemma 2). If c;, p; and By are numbers satisfying
C; Buiji + Py Biijx + i Buji + P Buin + Py Bhijy = 0,
Buip = Bjni = —Bhixjy  Bhiji + Bajri+ Buij = 0,

then each b; = c;+2p; is zero or each By is zero.

LemMMA 3. If a Riemannian manifold admits a conformal collineation, then
(11) LRhijk = 5,’,""1:',1:—5214:‘,,""Ah.jgik—Ah,kgija
(12) LR;j=Q2—-n)4;;—Ggy, G=A",=9g"4,,
(13) LR" =(2—n)A4*;—a" R";—Gd&), LR=2(1-nG-a"R,,
where a*; = ¢g"a,; and a;; = Lg;;.

The proof is trivial.

LEMMA 4. Let M be a Riemannian manifold admitting a conformal
collineation. If the scalar curvature of M is a constant, then

1
(14 LCh = n_2 (@aR*—a;R*+ gija" R’y — gua",R)

2
+ — G(on gij— o gu)+ (Okay;— 9} aq),

R
(n—1)(n—-2)
1
(15) (Lchijk).l = ——(ax R J ainhk,l + gijahr Ry ,— gikahr R'j.x)
n—2

2 1
+ — (G', +;_—1 RA,)(éﬁgi,-— ‘z!gik)'

Proof. Equation (14) is a consequence of (1), (11) and (13). Equation (15)
follows from (14) and (6).
LEMMA 5. If a Riemannian manifold M admits a conformal collineation, then
T;; given by
1
T;; = aij_;agij,

where a = g”a,,, is symmetric and parallel on M.
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Proof. The assertion is an immediate consequence of (6).
The following lemma seems to be well known:
LEMMA 6. Let p; denote a null parallel vector field on M. Then the equations

R4 =0, pR;=0, pp=0
hold.

LeEMMA 7 ([3], Theorem 2). Let M be a conformally symmetric manifold with
a positive definite metric. Then M is conformally flat or locally symmetric.

LEMMA 8. Let M be a conformally symmetric manifold admitting a symmetric
parallel tensor field a;; # cg;; (c = const).

() If the metric of M is definite, then M is locally symmetric.

(i) If M is non-locally symmetric (and, in consequence, its metric must be
indefinite), then for each point xeM such that R;;,(x)# 0 there exists
a non-trivial null parallel vector field p; on some neighbourhood U of x satisfying

: 1
(16) Rijx = fPinPk, ai; = ;agl'j"'epipj’

where e = t+1, a=g"a,, and [ #0 is a function on U.

Proof. Using Lemma 3 of [12] we can follow step by step the proof of
Lemma 4 in [12] to show the assertion.

LEMMA 9. Let M be a conformally symmetric manifold. If M is not
conformally flat, then its Ricci tensor satisfies (7).

Proof. If M is non-locally symmetric, then (7) is a consequence of
Theorem 9 in [4]. Otherwise (7) is trivial. :

LEMMA 10. Let M be a conformally symmetric manifold. If M is not
conformally flat, then its scalar curvature is a constant.

Proof. This result follows from Theorem 7 of [4].

LEMMA 11. Let M be a conformally symmetric manifold admitting a symmet-
ric parallel tensor field a;; # cg;; (c = const). Then M is Ricci-recurrent, i.e.,
its Ricci tensor satisfies the condition

a7 RuRijx = Rux Rij
everywhere on M.

Proof. Clearly, it is sufficient to prove (17) at points (if they exist) where
R;jx #0. Let xe M be such that R;;;(x) # 0. Then, by Lemma 8, there exists
a non-trivial null parallel vector field p; on some neighbourhood U of
x satisfying conditions (16).

If M is not conformally flat, then, by Lemma 9, we have

R R j+ R, j R i+ Ry R jpi s + Ry jR iy = 0,
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which, because of (1) and Lemma 10, can be written in the form
RuRjpi—RuRj i+ Ry Ripy— Ry Ry 1+ gjn Ry Ry
—gixRiR p 1+ g RejR i —gu R jR'y,
+(n=2)(Ri R jux+ R, j R"i) = 0.

Substituting (16) into the last equation and making use of Lemma 6, we
obtain easily on U

(18) pjthik_pjkaih+pithjk—pikaJ'h =0.

Since p; is non-zero on U, we may choose a vector u' at x such that
u'p, = 1. Transvecting (18) with w/u* and putting q; = u'R,; and q = w'w’R,,,
we get

Ry = ;P —qxPi +49PiPs>
which, by further transvection with «', implies q; = qp;. Hence R;; = qp;p;. The
last result, together with (16), shows that (17) holds at x.

Suppase now that M is conformally flat. Then, in view of (1) and Lemma

6, we have on U

1
Py Rij—p;Ra = n___TR(ptgij-pjgik)’

whence, by transvection with p*, we get Rp;p;=0. Hence R=0 and,
consequently, p,R;; = p;R,. But the last result yields R;; = hp,p;, which,
together with (16), completes the proof. '

Remark 1. With the help of Lemma 11 we shall prove in a subsequent
paper the following resuit:

Let M be an analytic non-locally symmetric conformally symmetric
manifold admitting a symmetric parallel tensor field a,, # cg,, (c = const,
Apu=1,2,...,n)..

(i) Then for each point xe M there exists a coordinate system in
a neighbourhood of x such that the metric of M takes the form (2), where [k;;]
G,j=2,3,...,n—1) is a symmetric and non-singular matrix consisting of
constants, [c;] is a symmetric matrix of constants satisfying k"c;; = 0 with
[k¥] = [k;]*, and B is a non-constant function of x' only.

(i) In this coordinate system the tensor field a,, is of the form
(19) aln = Cg/lu+e‘s}. 5‘ln
where C = const and e = +1.

(iii) Conversely, given [k;;] and [c;;] with properties stated in (i) and
a non-constant function B of x! only. Then formulae (2) define a non-locally
symmetric conformally symmetric metric. Moreover, every tensor field a,, of
the form

81, = C 192+ C,818 * (C,, C, = const, C, # 0)
is parallel and is not a multiple of g,,.
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Remark 2. A tensor field T;,;, on M is said to be recurrent if

(20) 7},...1, T;;...i,.k = Th...j,.k 7;,...;',,-

In particular, every parallel tensor field on M is recurrent.

Condition (20) states that at any point xe M such that T(x) # 0 there
exists a (unique) covariant vector b (called the recurrence vector of T) which
satisfies

(21) T; k= ka

1-..ip, i1...0p*

The above definition of recurrency differs slightly from the classical one
(given by (21)). Obviously, both definitions are equivalent on the subset of
M where T does not vanish.

Throughout this paper, by a recurrent (Ricci-recurrent (cf. [11])) man;fold
we shall mean a Riemannian manifold whose curvature tensor (Ricci tensor) is
recurrent.

Since every conformally flat Ricci-recurrent manifold is recurrent, Lemma
11 implies

COROLLARY 2 ([9], [10]). If a conformally flat manifold M (n = 4) admits
a symmetric parallel tensor field a;; # cg;; (c = const), then M is recurrent.

LEMMA 12. Let M be a conformally symmetric manifold. If v denotes
a conformal collineation on M, then

(22) (L,Chp)y = 0.

Proof. Clearly, we may assume that neither M is conformally flat nor v is
a conformal motion.

Let xe M (if it exists) be such that R;;;(x) # 0. Then, by Lemmas 5 and 8,
there exists a non-trivial null parallel vector field p; on some neighbourhood of
x which satisfies (16).

Using Lemma 10 and substituting (16) into (15), we obtain easily

2 1
(23) (Lv Chijk).l = n_——f (G.l + ;1—-_T RA:) (52 gij— 5? gix)s

which, because of (L,C";,),; =0, leads immediately to (22). . .

If now R;;(x) = O, then, by (15), equation (23) holds at x. But (23), by an
argument similar to the above one, implies (22). Hence (22) is satisfied at any
point of M. This completes the proof.

3. Conformal collineations on Einstein manifolds. In this section we shall
discuss conformal collineations on Einstein manifolds.

PROPOSITION 1. Let M be an n-dimensional (n > 3) Einstein manifold. If M is
not Ricci-flat and admits a conformal collineation, then this collineation is
a conformal motion.
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Proof. Since R;; =n"'Rg;;, (12) yields

1 1
. —_— — se —— R .-’
(24) A;j 2—nGg”+n(2—n) a;;
whence, by contraction with g%, we have
1

(25) 2(1—n)G = ;Ra,
where a = g”a,,.

But (25), in view of (6), implies

G i= mRA j°
which, together with (24), gives
1
A= mRAkgij'
Hence
1
(26) ArR'ijk ——R(A,g:j— jgik)-
n(n—1)
Differentiating (26) covariantly and taking (24) into account, we get
1 1 ,
27) ARy +— 3= GR:.,k"‘ n2— )RarlR ijk
1 1
= n(n— 1)(2—n)R G(gijgkl_gikgjl)+;R(aklgij_ajlgik) .

On the other hand, condition (6) yields
(28) a,eru‘l"‘a,,'R'j” =0.

Interchanging in (27) the indices i and /, adding the resulting equations to
(27) and making use of (28), we obtain easily

1
n*(n—1)(2—n)

Contracting the last equation with g”/ and taking into consideration the
obvious formulas

AR, = and A'R%,;=A"(Ry,—Ryu,)=0

we get R(ay—n"'agy) = 0, which, since R = const # 0, completes the proof.

AR+ ARy = R*(angij—ajgu+ anig i— @jigw)-
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As an immediate consequence of (25) and (24), we have

COROLLARY 3. If an n-dimensional (n > 3) Ricci-flat manifold admits
a conformal collineation, then the vector field A; is parallel and the conformal
collineation is therefore a special curvature one [8], i.e.,

(4.

Remark 3. Proposition 1 seems to belong to the folklore. Since the sequel
of this paper requires equations (24)27) as well as Proposition 1 itself, we have
included its proof for completeness.

PrROPOSITION 2. Let M be an n-dimensional (n = 3) locally symmetric
Einstein manifold. If M is not Ricci-flat and admits a conformal collineation, then
M is of constant curvature or the conformal collineation is an isometry.

Proof. Substituting (25) and a;; = n"'ag,; into (27), we obtain easily
RaS,,-j,, =0, where

1
(29) Slu'jk = Rhijk _mR(gijghk_gikghj)~

Since M is locally symmetric by assumption, S is parallel on M. Therefore,
if S vanishes at one point, then it vanishes everywhere on M. The last remark
completes the proof.

As a consequence of (5) and (24), we have

COROLLARY 4. Let M be an n-dimensional (n > 3) Einstein manifold. If
M admits a special curvature collineation, then M is Ricci-flat or the curvature
collineation reduces to an isometry.

An n-dimensional (n > 3) Einstein manifold is said to be a super-Einstein
one if its curvature tensor satisfies R*™ R,,,.. = wg;; for some function w. It is
well known that w = const if 3 <dim M # 4.

THEOREM 2. Let M be an n-dimensional (n > 3) super-Einstein manifold with
a positive definite metric. If M is not Ricci-flat and admits a conformal
collineation, then M is of constant curvature or the conformal collineation is an
isometry:

Proof. Equation (26) can be written in the form

A'Rkjir = R(Akgij_Ajgik)°

1
nn—1)

Transvecting the last result with RY and using the definition of
a super-Einstein manifold, we obtain

2
(30) (W—mRZ)A, = 0.
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Since the Einstein metric is analytic in suitable coordinate systems (see
[61), (30) implies

%

w= n?(n—1)

In the first case we have S**S,.;, = 0, where S is defined by (29). Hence M is of

constant curvature. If 4; = 0, then (24) implies a;; = 0. This completes the proof.

2 or A;=0.

4. Conformal collineations on conformally symmetric manifolds.

THEOREM 3. Let M be a non-conformally flat conformally symmetric
manifold. If M admits a conformal collineation, then this collineation is an affine
one.

Proof. Applying to the formula ([21], p. 161)

h r
LCjuy = (LCYp)+CipL {r 1} —ClealL {i I}

—chopd T e T
el ol

expressions (5) and (22), we get
Bl gnA,Cijp—24,Chip— Ay Ciip— A; Cruiju — A;Chine
— Ay Chiji+gu A" Chji+ 9 A" Chigk + g A" Cpije = 0,

which, by contraction with g"" and making use of Lemma 1, yields 4,C";3 = 0.
But the last result reduces (31) to the form

(.32) 24, Chiji+ Ay Criju+ A Cpp + A; Chire + A, Chijy = 0.

Suppose that there exists a point x€ M such that A4,(x) # 0. Then, by (32)
and Lemma 2 (with ¢, = 24)), we obtain C;;(x) = 0, which, since C is parallel,
extends to the whole of M — a contradiction. Hence A j = 0 everywhere on M,
which completes the proof.

COROLLARY S. Let M be a non-conformally flat conformally symmetric
manifold. If M admits a conformal motion, then this motion is necessarily
homothetic. ‘ .

Proof. Corollary 5 follows immediately from Theorem 3 and the
definition of a conformal motion (cf. [16], Theorem).

COROLLARY 6. Let M be a non-conformally flat conformally symmetric
manifold. If M is not Ricci-recurrent and admits a conformal collineation, then
this collineation is necessarily a homothetic conformal motion.

Proof. Theorem 3 shows that a;;, = 0 (cf. equation (6)). If the conformal
collineation were not a homothetic conformal motion, then M would admit
a symmetric parallel tensor field a;; # cg;; (c = const). The assertion is now
a consequence of Lemma 11.
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Remark 4. The metric described in Example 1 is Ricci-recurrent. The

existence of non-Ricci-recurrent essentially conformally symmetric manifolds
has been established in Theorem 2 of [5].

As an immediate consequence of Lemma 5 and Corollaries 2 and 6, we
have

COROLLARY 7. Let M be a non-Ricci-recurrent conformally symmetric
manifold. If M admits a conformal collineation, then this collineation is
necessarily a conformal motion.

COROLLARY 8. Let M be an n-dimensional (n > 4) non-flat conformally flat
manifold with a positive definite metric. If M admits a conformal collineation
which is not a conformal motion, then M is a non-Einsteinian locally symmetric
manifold.

Proof. The assertion follows from Lemma 8 and Proposition 1.

PROPOSITION 3. Let M be a compact orientable non-conformally flat
conformally symmetric manifold with a positive definite metric. If M admits
a conformal collineation, then M is locally symmetric and the conformal
collineation is necessarily an isometry.

Proof. By Lemma 7, M is locally symmetric. Moreover, Theorem 3 states
that the conformal collineation is an affine collineation. But, as has been shown
by Yano ([21], Theorem 5.1, p. 222), every affine collineation reduces on
a compact orientable manifold with a positive deflnite metric to an isometry.
The last remark completes the proof.

5. Some examples. Let M be an analytic conformally flat manifold (n > 4)
admitting an essentially conformal collineation, i.c., a conformal collineation
which is neither a conformal motion nor an affine one. By Corollary 2, M is
recurrent. On the other hand, using Lemma 6 and the second Bianchi identity,
it is not hard to check that the metric of an analytic non-locally symmetric
conformally flat manifold (n > 4), admitting a non-trivial parallel vector field
w on some coordinate neighbourhood U, must be indefinite, its scalar
curvature must vanish everywhere and w is necessarily null. Moreover, if w is
another non-trivial parallel vector field on U, then w = c¢w (¢ = const). Hence,
M cannot be a special recurrent manifold ([18], pp. 156 and 165).

Suppose now that M is non-locally symmetric and that its curvature
tensor does not vanish at any point. Then, in view of (21), M is recurrent in the
sense of Ruse and Walker (cf. [18] and [20]). Moreover, since M is conformally
flat and non-special recurrent, its general metric form can be written as

ds? = Q(dx')* + kydx'dx/ +2dx'dx", Q = Bk;x'x/,

[ki;] being a symmetric and non-singular matrix of constants (i, j = 2,..., n—1),
and B # 0 is a non-constant function of x! only ([18], p. 176). The metric just
described is non-decomposable (cf. [10] and [18], p. 181).

7 — Colloquium Mathematicam LVIIL. 2
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Now we are going to show the existence of conformally flat manifolds
admitting essentially conformal collineations.

ExaMPLE 3. Let M denote the Euclidean n-space (n > 4) endowed with the
indefinite metric given by the first equation of (2), where

Q = Bk;;x'x!, B =%+nexp(—2x")
j

and [k;;] is as above. Then:
(i) M is a non-special recurrent conformally flat space.
(ii) The vector field v given by

1 A | . 1
1 _ 1 i 1y i — byl 1 i)
(33) v nexp(x ), v znexp(x )x',  v"=bx 4nexp(x )kiyx'x!,

where b = const # 0, is an essentially conformal collineation.
(i) If b =0, then v is a non-homothetic conformal motion.

Proof. In view of the previous argumentation, (i) is obvious.
In the metric considered, the only non-vanishing Christoffel symbols are
those related to

i . n 1 - n
= — ¢ = — xtxd = J
(34) {1 1} Bx , {1 l} 2B_1k,jx X7, {l l} Bkux ,

where the dot denotes partial differentiation with respect to coordinates.
Using (33) and (34), it is easy to check that the equations

1 1
(35) Ay = ;exr)(x‘)gzﬁep;p,., Arue = ;eXP(x‘)éé Gin

hold, where

Auwe=1,2,....n, a3, =L,gs=03,+0,,,

P, =+/2¢b8; and e= +1.
Hence, by (35),

1
Aipe = 2A,9:,, Where 4, = Eexp(xl)éi.
The last result shows that v is a conformal collineation. If b # 0, then,
because of (35), v is neither a conformal motion nor an affine collineation.
If b=0, then p, vanishes. By (35), v is therefore a non-homothetic
conformal motion. This completes the proof.

As an immediate consequence of Example 3, we have

COROLLARY 9. For each n > 4 there exist n-dimensional non-special recur-
rent conformally flat manifolds which admit essentially conformal collineations.
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EXAMPLE 4. Let M = R"™! x R} (n > 5) be endowed with metric (4), where
f;; has the properties described in Example 2. It is easy to check that the vector
field v given by

=0, " =(n-1)x")Ve"D
satisfies the condition
L,ga, = vau+0,2=2((n—1)x"2 =Dy, .

Hence, by the last example, we have

" COROLLARY 10. For each n > 5 there exist n-dimensional almost conformally
symmetric manifolds which admit non-homothetic conformal motions.

6. Conformal collineations on semi-Ricci-symmetric manifolds of harmonic
curvature.

LeMMA 13. Let M, dim M > 3, be of harmonic curvature satisfying condition
(7). If M is analytic and admits a conformal collineation which is not affine, then
the equation

r 1 1 rs 1 2
(36) R,R’; = - RRij+nR R,sg;j n(n— l)R 9ij
holds.
Proof. Applying to
(37) Rij,k = Rik,j

the formula ([21], p. 16)

LR;, = (LR,.,),,-R,jL{i rk}—Ri,L{,,rk}
and using (5) and (12), we obtain
(38) (—2)A,Riyu— AR+ A;Ry+G jgu— G ug;j
+9guaA,R"j—gijA, R, =0,
whence, by contraction with g“, we have

1
G,j = -ITnRAj

But the last result, together with (38), yields
1
(39) (m—2)A,R";u = A,R;;— A;R; +mR(Ajgik-Akgij)

+9ij4, R’y —guA,R';.
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On the other hand, condition (7) implies
R*A,R",s+R°;A,R"y, =0,
which, because of (39), can be written as

1
(40) A;R,R";— ] R(A;Ryi—A,R"igp)— A, R R°,gx

J

1
+ A;R,R’; o1 R(A;Ry;— A, R ;gu)— A, R" R*;gy = 0.

Contracting (40) with g’*, we find

1 1
AR ,R°;, = ——RA,R";+-R"”R,,A,— ! R*A4,,
n—1 n n(n—1)

which reduces (40) to the fotm
1

1 1
r__ . —_R"s . RZ A
(RrkR i n—1 Rle n Rrsglk +n(n_ l) gik) J

, 1 1. 1
+(R,kR j_n__“_l‘Rth_;R Rrsgjk'l"',(n—_l)Rzgjk)Ai =0.
Since A4; does not identically vanish and M is analytic, the last result leads
immediately to (36). This completes the proof.

THEOREM 4. Let M be an analytic n-dimensional (n > 3) semi-Ricci-
-symmetric manifold of harmonic curvature. If M admits a conformal collineation
which is not affine, then the Ricci tensor of M is parallel or it satisfies the
condition

n—4 _,
4(n—1)2R

Proof. Condition (37) implies R = const. Differentiating (36) covariantly
and making use of (37), we get

(41) R"R,, =

1 2
42) R,ixR;+R,R', j= ERRUJ + n R™ R, 49,
whence, by contraction with g* we obtain R™R,, j=0.
The last result reduces (42) to the form

. 1
43) R,;xR"j+R,R ;= n_1 RR;j .

But (43), together with (37), implies R,;,R"; = R,; ;R";, whence
Rri.k R'j = Rri.erk = Rrj.iRrk = Rrj.eri = RriR'j.k-
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Thus, by (43) and (37), we have

1
(44) R.R';x = mRRij.k
and, consequently,
1 r
(45) Ry R, Ry = -Z(n——l)RR'pR ke
Applying now (36) and (44) to (45), we obtain easily
rs 3n—4 _, _
(e 22 0.

This completes the proof.

THEOREM 5. Let M be an n-dimensional (n > 3) analytic manifold of
harmonic curvature with a positive definite metric. If M satisfies (7) and admits
a conformal collineation which is not affine, then the Ricci tensor of M is parallel.

Proof. Assume (41) holds. Then

y__ 1 ; 1 _

But the last result implies

1
Ry = Sy

Hence R;; =0. This completes the proof.

Remark 5. Lemma 4 of [14] states that the Ricci tensor of a compact,
with positive definite metric, semi-Ricci-symmetric manifold of harmonic
curvature is necessarily parallel.
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