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0. Introduction. In this paper we study some problems which arose
in connection with the notion of k-closure defined in [2]. Therefore, we
recall first some notation and theorems from [2]. We shall use the termi-
nology of [1].

By a graph we mean a couple @ = (U; X), where U is a non-empty
set called the set of vertices or points and X is a family of 2-element subsets
of U called the set of edges. The edges will be written in the form [ab]
rather than in {a, b}.

We say that the vertices a, b are adjacent (which we shall denote
by a & b) if [ab] € X.

Let @ = (U; X) be a graph and let A = U.

We say that a vertex ¢ € U is8 k-reachable (k > 0) from the set A if
there exist k different vertices a,,...,a,€A4 such that a; < ¢ for
i =1,2,...,k If ¢ is k-reachable from A we shall write ¢ 1 A.

We say that a set A is k-closed in @ if A contains all vertices
k-reachable from A. _

For A = U let us denote by C(,(A) the smallest %k-closed set con-
taining 4.

Let G = (U; X) be a graph, where |U| = a> 1; we say that the
graph G is k-generated, 1 < k < min(N,, a), if for any A = U such that
|[A] =k we have C,(4) = U.

We say that @ = (U; X) is an edge-minimal k-generated graph if G is
k-generated and each graph @ = (U; X’), where X' c X, is not k-gen-
erated.

The function ¢ was defined in [2] as follows: for any two positive
integers k¥ and n (L <k < n)

p(n, k) = lr/n—(k-;l).
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In [2], Theorem 4, it was proved that for any positive integer k¥ and
any cardinal a (k¥ < a) there exists an edge-minimal k-generated graph
@ = (U; X), where |U| = a and

x| =" =,
e(n, k) if a=n<N,.

The graph G* = (U; X) was defined as follows: # = |U|, k = |U,l,
where U, is a subset of U, X = X,UX,, where X, consists of all 2-element
subsets of U, and X, consists of all 2-element subsets [wv], we U, and
ve U\U,.

The number ¢(n, k) is equal to the smallest integer m for which there
exists a k-generated graph @ = (U; X) with |U| =n, | X| =m, 1 < k< n.

Not every edge-minimal %-generated graph with n vertices (1 < k < n)
has ¢(n, k) edges. In [2] an example of an edge-minimal 2-connected
graph @ containing 6 vertices and ¢(6,2)+1 edges was given. In this
connection J. Plonka asked the following question:

_ Does there exist for any natural numbers ¥ and # (1< k<n) an
edge-minimal k-generated graph @ = (U; X) such that |U| =» and
|X| > g(n, k)*

In Section 1 we answer the question in the affirmative for ¥ > 1
and n > k+4 (Theorem 1). The number k+4 (k> 1) is equal to the
minimum of those natural numbers » for which there exists a graph
G = (U; X) with the required properties (Theorem 2). '

In Section 2 we give an answer to the question of M. Syslo who asked
what relation is between k-generation and k-connectivity. Namely, we
prove that if G = (U; X), where |U| = n, is k-generated (1< k< n),
then @ is k-connected (Theorem 4). The converse is not true since (see
Theorem 5) for any k > 0 there exists a 1-generated graph G the vertex-
connectivity »(G@) of which is equal to k.

1. Edge-minimal k-generated graphs.

THEOREM 1. For natural numbers k and n such that k > 1 and n > k+ 4
there exists an edge-minimal k-gemerated graph G = (U; X) satisfying
(%) Ul =n and |X|> ¢(n, k).

Proof. Let n = k+38, %> 1 and 8 > 4. We shall consider two cases:
(I) & is even and (IX) s is odd.

(I) We define a graph H , = (U; X) as follows:
U=U,vU,vT,,
where
Uy = {uyy oy}, Up=1{i,5}, Us={w,...,0};
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X = XIUX2UX3’
where
X, ={{w]: ueU,,veU,v #u}, X,={[iv] or [jo]: v e Uy},
Xy = {[Wye1%p112]: £ =0, ..., (8—2)/2}.
We prove that the graph Hy,, satisfies (x). Observe that

(k—2)(k —3) s
2 ety

1X| = | X+ 1Kol + | Xyl = (B—2)(s+2)+

B —k+2ks+s—2
- 2

)
80
8—2
\X| —g(k+8, k) =——>0.

Hence (*) holds.

We show that Hf,, is k-generated. We have to prove that for any
A = U such that |4] =k we have U < 0,(4). There are three cases:
1°%,jeAd,2°t¢Aand j¢A4,3°4ed and j ¢ 4.

1° Obviously, U, < C,(4), so Uyu U, < C,(4), and since for every
u € Uz we have U U,vU,, we get Uy < 0p(4). Thus U < O, (4).

2° Let 1 ¢ A and j ¢ A. Then there exist w;, w, € U3 such that
w;, w,, € A. Note that

i ‘k" Ulu{wl’ wm} and .7 ‘;’ Ulu{wl’ wm} .

Thus by 1° we have U < 0,(4).
3° Let 1 € A and j ¢ A. Then there exists w, € UynA. Hence

W1 U,V{i,w} or Vi415? U,u{i, w}.
Since j o U,V{w,, w,_,} and j g U,V{w;, w;,,}, we have j e Cr(A4).

Further we argue as in 1°.

It remains to prove that the graph Hj , is edge-minimal k-generated.
We have already proved that Hj,, is k-generated, so it suffices to show
that the graph H, , —= is not edge-minimal, where « is an arbitrary edge
of the graph Hf,,. For this purpose we consider 5 classes of edges:

(1) P, = {# = [w]: v e U,, v e Uy},

(2) Py = {& = [uv]: we U,,veU,},

(3) Py = {w = [uv]: we Uy, ve U,

(4) P, = {w = [uv]: u € Uy, v € Uy},

(6) Py = {o = [uv]: w e Uy, ve Ug}.

One has to check that foranyx e P; (¢ =1, ..., ) there exists a set 4,
where |A| =k and C,(4) c U. Table 1 gives some examples for every
class P;.
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Table 1
i xz A
1 [“lc-s“k—z] {u]: veey Up—3, Wy, W3, ‘.}
2 [’“k-z'wﬂ {uln coey Up—3, Wy, Wy, i}
3 [ur—2t] {“1» ooy Uk—3, Wy, Wg, $}
4 [‘wll {“1’ -"»“k-anl'J:}
6 [0, w,] {uys ooy Ug—2, wy, §}

(II) Let » = k+8,k > 1, 8 > 4 and let 8 be odd. We define the graph
H}, =(U'; X’) as follows:

U'=U, X =XuX,uX,,
where
X, =X, X;=2X,\{wjl},

' 8—3
X, = {‘” = [w,_1%0,] or & = [Wy,,Wy,,]: t =0, ..., __2"‘}

We have
k*—k+2ks+8—3
2 ’
80 (*) holds. The proof that H’ is edge-minimal k-generated is similar to
that of case (I).

Observe that the assumption n > k+4 in Theorem 1 is essential,
since we have

THEOREM 2. The number k44 (k > 1) i3 equal to the minimum of those
natural numbers n for which there exists an edge-minimal k-generated
graph G = (U; X) satisfying (*).

Proof. The existence of the graph @ for the number n = k + 4 follows
from Theorem 1. We prove that for n < k44 such a graph G does not
exist.

Let K, denote the complete graph with » vertices, i.e., a graph without
loops any two different vertices of which are adjacent.

Let 6(K,,) denote the number of edges of K,,, i.e.,

n(n—1)
2

X' =

G(Kn) =

The values of ¢(n) = ¢(K,) —¢(n, k)fork<n< k+4areq(k+1) =0,
q(k+2) =1, q(k+3) = 3. It is obvious that in the first two cases such
a graph G does not exist. Consider the third case. Since ¢(k+3) = 3,
the graph G can have 6(K,)—2, ¢(K,)—1 or ¢(K,) edges. We prove that
if |X| =e6(K,)—2, then G is k-generated but not edge-minimal. Let
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A = U and |4| = k; then there exists ¢; ¢ A such that 014-;.4. Further,
there exists ¢, ¢ AU{¢,} such that o, < AuU{c,} and there exists
c; ¢ AU{c,, 05} such that o, o AU{e,, ¢s}. Thus G is k-generated.

To prove that @ is not edge-minimal it suffices to consider two cases:

1° @ = (U; X), where U = U,V U,, and
Uy = {tyy .00y Upy}, U, = {wy, wy, wy, w,}, [w,w,] ¢ X, [wyw,] ¢ X.

2° @ = (U; X), where U = U,vU,, and

U, = {tyy oy w}, U, = {wy, w,;, ws}, [w,w,] ¢ X, [w,w,] ¢ X.

1° We prove that the graph @' = (U’; X’), where U = U’ and
X' = X\{[w,yw,]}, is k-generated. There are three cases:

(a) wy, wye A; then w, < U,U{ws}. Since U, c O (4), we have
U’ = 0,(A). *

(b) w, ¢ A, wy ¢ A; then w, € A or w, € A. It is easy to see that in
both cases we get U < C,(4).

(e) w; ¢ A, wy € A; then

wl‘,;* U, U{w,}, ’“’4‘;’ U,u{w,, wy} and 'wa‘;’ U,V{w,, wy, w,}.

2° The graph G’ = (U"'; X"’), where U = U and X" = X\ {[w,ws]},
is k-generated, since for any v € U we get w+ U, and for any 4 = U
we have U, < 0,(4). ,

We have proved that if G has e(K,) —2 edges, then @ is k-generated
but not edge-minimal. It is obvious that if | X| = ¢(K,) —1 or |X| = 6(K,),
then the same holds.

When we consider the k-generation or edge-minimality of a graph,
it is sometimes convenient to study properties of the complement of the
graph. Let @ = (U; X) be a graph. Write X = {[ab]: a, b € U, [ab] ¢ X}.
The complement of the graph @ is G = (U; X ).

LEMMA 1. Let G = (U; X) with |X| >k and G = (U; X) satisfy the
following condition:

(O) there exists A< U, where |A|==Fk, and fbr any u € U\ A there exists
w e A such that [uw] e X.

Then G is not k-generated.

Proof. Let G = (U;f) satisfy (C); then for any we U\ 4 there

exists w € A such that [uw] ¢ X. Thus C,(4) = A and @ is not k-gen-
erated.

Let G =(U; X), where U = {u,, ..., u,}. Let (@) = (Cgy +++) Gy,
where ¢; denotes the degree of the vertex u; in the graph @ (i € {1, ..., n}).
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LeMmA 2. If @ = (U; X) t8 an edge-minimal k-generated graph, then
(i) < (n—1)—k for te{l,...,n};
(ii) in n(G) there are at most k elements equal to 0;
(iii) <f in n(_é) there are exactly k elements equal to 0, then G 18 1somorphic
to the graph Q% defined in Section 0;
(iv) of n = k48 and there are k —1 zeros in u(@), then
”

20‘ = 8(8—1).

i=1
Proof. (i) If G is k-generated, then for any vertex u; we have degu; > k.

(ii) If in n(a) there are more than k elements equal to 0, then G is
not edge-minimal.
(iiil) We have

m(@%) =(0,...,0,n—1—k,...,n—1—F).

Let

7‘(6) =(0,...,0, Cry1y ooy Cp)s
k

where ¢, ,, ..., 0, are different from 0. Since @ is an edge-minimal k-gen-
erated graph, we infer that if [u;#;,] e X and k+1<j<n, then 1 <i< k.
Thus @ is isomorphic to GX.

(iv)Let » = k48 and take =n(@) =(0,...,0,¢,...,0,). Let H
= (U,, Y) be the subgraph of the graph & induced by U, = {uy, ..., %,}.
Since in G there are k¥ —1 vertices adjacent to any vertex of &, the sub-
graph H is 1-generated, so connected. Since G is edge-minimal, H does
not contain cycles So H is a tree with s+41 vertices and s edges.
Thus the graph H has ¢(K,,,) —s edges. Consequently, =(@) = (0, ..., 0,
Oy +++y C,) Batisfies

Z‘o, = 2(e(K,,,) —8) = (8+1)s—28 = (s —1).

t=1

THEOREM 3. For n = k+4 (k > 1) there exists a unique (up to isomor-
Dphism) edge-minimal k-generated graph G = (U; X) satisfying (=).

Proof. We are interested only in graphs with »n vertices and g edges,
where n = k+4 and e(K,)—¢< ¢(K,)—¢(n,k) =6. It will be con-
venient to consider complements of such graphs. Consider all possible
sequences u(G) for which |U| =k+4 (k> 1) and |X| = 6(K;,4)—q<6.
By Lemma 2 We can restrict the number of sequences az(G) Using Lemma 1
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one can check that if there are less than k¥ —2 zeros in n(E),_ then @ is not
k-generated. It remains to consider only a few sequences = (@). The results
are contained in Table 2. We use the following notation: G = (U; X),
G =(U;X), U="U,9U0,, Uy="{ug..yths}y Us={w, coey e} If
w e U,, then degu = n—1.

Table 2
u(a) X ‘ Description of @
0,...,0,1,1,1, 1,3, 3)| [wgws), [wgw;], [wew.], [wsw3], [wsws] | not k-generated
k=2 .

' [wsws], [wews], [wew3], [wws], [wyws] | not k-generated
©,...,0,1,1,1,2,2,3)

— [wews], [wew,], [wews], [w1ws], [w2ws] not edge-minimal
"3 .
[wew1], [wew.], [wews], [wsw;], [wsw,] | not k-generated

' [w1w], [w3w,], [w3ws], [wswe], [w)ws] edge-minimal
©....0,1,1,2,2,2,2) | _ _ _ _ _ _ _ _ _ _ _ __ k-generated
k-2 [wy1w3], [waws], [wsws], [wewe], [wsws]

[wyw;], [waw,], [w3ws], [wywe], [wswe] not k-generated
©,...,0,1,1,1,1,1,3) | [wyws]), [waws], [w3we], [wyws] “not k-generated
\eem— am—— .

%—2
©,...,0,1,1,1,1,2,2) | [w1ws], [waws], [w3ws], [wsws] not k-generated
ee——— . o ®
k-3 [w1w;], [wsws], [wyws], [wsws] not edge-minimal
©,..,0,1,1,1,1,1,1) | [w;ws], [ws,], [wswe] not edge-minimal
%~2

2. Comnectivity of k-generated graphs. We give now some relations
between k-generated graphs and k-connected graphs. First observe some
properties of k-connected graphs.

LEMMA 3. Let @ = (U; X) be k-connected and v ¢ U. Let G* = (T {v};
XUX,) be a new graph, where X, = {[vu,], [vu,], ..., [vw,]1}, 8 =k, and
Uyy Ugy +..y U, are different elements of U. Then G* is k-conmected.

Proof. Let »(@) denote the vertex-connectivity of @. Thus »(@) = k,
so the smallest number of vertices splitting &, i.e., making @& not connec-
ted or trivial, is not less than k. We show that the same holds for G*. Let 8
be the set of vertices splitting G*. We have three possibilities:

(1) ve8,

(2) v¢8 and {w: wev}c 8§,

(3) v¢8 and {w: we v} & 8.

(1) Since v € 8§, we have |8| > %(G)+ 1. Moreover, after removing the
vertex v, we get the graph G.

(2) In this case we have |8| > dego.
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(3) |8} = x%(G@) because using the vertex » we get new chains connect-
ing vertices of the graph G.
In any of these three cases we get #(G*) > »(@), hence G* is k-connected.

LEMMA 4. Any k-generated graph G = (U; X) for which |U| = n,
1 < k< m, conlains a subgraph K, ,.

Proof. By Lemma 2 in [2] it is known that @ contains a subgraph
K, =(U,, X,). Since C,(U,) = U, there exists a € U\U, such that
a < U,. Thus any two different elements in the set U,U {a} are adjacent.

THEOREM 4. Let @ = (U; X) with |U| = n be k-generated (1< k < n).
Then G t8 k-conmected.

Proof. Put » = k+8. We use induction on 8. Lemma 4 gives the
first step. The inductive step follows from Lemma 3.

The k-connectivity of a graph does not imply the k-generation of it.
However, we have

THEOREM b. For any integers k > 0 and n > 2k there exists a 1-gen-
erated graph G = (U; X) such that (@) = k, |U| = n, and @ i8 not 2-gen-
erated.

Proof. Put U ={wy, ..., v, %, ..., %, ;}, X =Y\ (X,VX,), where
Y is the set of all 2-element subsets of U, X, = {[v,9,]:¢ = 2, ..., k},
X, ={[wyu): j =2,...,n—k}.

It is easy to show that G is k-connected and only 1-generated.

LEMMA 6. If G@ = (U; X) 18 a graph such that x(@) =k, |U| = n and
k< n< 2k, then G i8 8-generated for each 8 < n[(n —k).

Proof. For ve U and W = U we write

deg(v, W) = |[{we W: weo v}, &e?(o, W) = |{w e W: non(w < v)}|.
For A c U and s = |A] let
A, ={v: v A}, A,={: v AUA}\(AU4)).
8 8

Since %(@) = k, we have -de—g('v, U\{v}) <n—k—1 for any veU.
Hence

|{v: non(v o ANAI< |A|(n—F—-1).

Observe that the condition & < n[(n —k) is equivalent to s(n —k —1)
< n—8, which means that A, # @. Consider the set U\ (4UA,UA,).

Put |UN(AVA,UA,)| =r. If ue U\N(AUA,U4,), then deg(u,AUA,)
> |4,|+1. Oonsequently, we get
r(l4,|+1) < (n—k—1)|[AU4,| — |4,
S(n—k—1)(8+|4,])) —(n—8—]4,|—7),
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whence

e <n—k)(n/<n|;k|)+lAll)—n -

n—k,

which implies |AUA,UA4,| > E.
We shall prove that forany v € UN(AUA,UA,)wehave v« AUA,UA,.
Otherwise, there exists u, € UN\(4AUA,UA4,) such that y

deg(uy, AUA,UA,) > k—(s—1).
Then

S . ‘n
deg (%o, AUAIUA,) >k—s+1> k—m +1 = o

Z (n—Fk-—1)
>n—k—1,
which contradicts the assumption x»(@) = k.

LEMMA 6. The inequality 8 < n/(n —k) in Lemma 5 cannot be strength-
ened

Proof. We construct a graph @ = (U; X) such that |U| =,
%(G)=Fk, k < n < 2k and @ is not t-generated for ¢t = {n/(m —k)}(').
Put

U = {thyy eeny Uy O3y e0vy Op_y}
We split the set U into the classes
K = {“n sy “t}f -Kl = {"1’ ""vd}’ Ka = {”d+u "‘)”zd}, seey
Ki = {”(i—l)d+n ey ”ia}! eey Kq = {'v(q—l)d+u eeey '”u—t};

where d =n—k—1. Let X = Y\ X,, where Y is the set of all 2-element
subsets of U and X, = {[u;9;]: 1<i<y¢q, v;eK}.

Ifn =k+1, then ! = n and @ is not a ¢-generated graph.

If n>k+1, then t<n and K,V ... UK, #@. We also have

. n ‘> n—t { n—t
Tk’ ' n—k-1' n—k—l}_q’

whence ¢ > q.

Since for any v; there exists « € K such that non (v;+>u), so by Lemma 1
the graph @ is not t¢-generated.

Given a graph G, let us denote by g(@) the maximum of all numbers s
for which @ is s-generated.

THEOREM 6. If a graph G = (U; X) 18 such that |U| = n and x(G) = k,
then g(@) = {n/(n —k)} —1 and this inequality cannot be strengthened.

() {m} = —[—m] (see [1]).
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Proof. From the definition of k-connectivity it follows that n > k.

If n > 2k, then by »(@) > 1 the graph @ is 1-connected, and so 1-gen-
erated. Thus ¢g(@)>1 = {n/(n—k)} —1. The inequality is sharp by
Theorem 5.

If £ < n < 2k, our theorem follows from Lemmas 5 and 6.
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