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Let O be the set of finitary operations on a set A. A precomplete (or
maximal) class is a dual atom in the lattice of composition closed subsets of
0. We are interested in the precomplete classes containing: all unary oper-
ations on A. In the late thirties Stupecki found that for A4 finite the set of all
essentially unary or nonsurjective operations is the unique precomplete class
containing all unary operations. In the sixties Gavrilov proved that for |A|
= N, there are exactly two such maximal classes. In this paper we look at
the problem for |A| > N,. For | 4] regular one such maximal class is found by
complete analogy with the countable case. This does not work for the other
maximal class determined by Gavrilov as for |A| = NR; (assuming CH) the
immediate analogue does not have the standard form.
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1. Preliminaries. Let « > 1 be a cardinal (= initial ordinal) and let 4 be
the set of all ordinals less than a. For n =1, 2,... let O™ be the set of all n-

ary operations on A (i.e. mappings A" —» A) and let O = |J O"™; for our
n=1
purposes the zero operations do not fit well and are replaced by unary
constant operations. For any F < O the set F nO™ is denoted by F™. A set
C <O is called a closed class if it contains all compositions (also called
compound operations or superpositions) of its elements and any operation
obtained by permuting or identifying variables of an operation from C. Let
¥ = ¥, be the set of closed classes. A. I. Mal'tsev ([17]) pointed out that ¥
is the set of all subalgebras of a certain algebra O = <O; *, {, 7, 4) on O of
type <2,1,1,1). Hence (&, <) is an algebraic lattice ([5], [11]). The
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subalgebra of O generated by M < O (i.e., the least closed class containing
M) is denoted by [ M]. The countable lattice .#, (known as Post’s lattice) is
completely described in [20] but little is known for a > 2 except that |.%Z,|
=2"9for 2<a <N, and |Z,| =2% for a > N,. The dual atoms of &, are
called maximal or precomplete classes. For a finite a the lattice £, is dually
atomic and the set .#, of the dual atoms of %, is completely described in:
[20] for a = 2, [12] for a = 3, [21], [22] for & > 3. For a > N, a few classes
from .#, are known ([7], [10] for a = Ny, [25] for a > N,) although it has
been proved indirectly that |4, =|%, ([9], [10] for a =N,, [26] for
a = N).

An operation fe O™ (n > 1), is said to be essential or Slupecki if f takes
on all values and depends on at least two variables. The following Stupecki
Criterion is not only one of the earliest but also one of the most important
results in the theory: let 2 <a < N, and let M < O contain O'. Then M is
complete (i.e. [M] = O) iff M contains an essential function ([31], [12], [4];
several generalizations are given in [12], [28], [33], [34], [18]). It can be
formulated as follows: For 2 <a < ¥, the set S of all non-essential oper-
ations is a unique maximal class in the interval X, = [0, O] (actually X/,
is a chain of length a+1 ([3]).

An analogue of the Stupecki criterion for a = ¥, has been found by
G. P. Gavrilov ([10]) who proved that X, is dually atomic and contains
precisely two maximal classes (a description of these classes will be given in
Sections 3, 5: classes PolG, PolH). The importance of the Slupecki
criterion in the finite case and the fact that ¢, can be expected to be one of
the simplest intervals in %, lead naturally to the problem of determining the
dual atoms in J, for a > N,. The following very weak form of the Stupecki
criterion is well known and essentially due to Sierpinski ([30]) (see also [15],
[5, II. 54)).

LEMMA 1.1. Let a > N, and let 0"’ =< F = 0. Then F is complete if and
only if [F]'® contains an injection.

It seems that very little is known about X, for a > N,. In this paper
without much trouble for regular @« one maximal class in X, is found by
complete analogy with the countable case. However this does not work for
the other maximal class determined by Gavrilov. In Section 2 a subset of X/,
is determined which contains all maximal classes from X’,, then one max-
imal class in Jf, is found for every a > ¥,. In Section § it is shown that for
o = N, (assuming CH), the immediate analogue of the second maximal class
given by Gavrilov does not have the standard form.

The set X", can be conveniently discussed in terms of sets of operations
preserving relations. Let I be a non-empty set. An I-relation or |I|-ary
relation ¢ on A is a subset of the set A’ of all mappings I - A. If |I| = k <N,
we shall identify A’ and A4*, and the I-relations are simply the k-ary relations.
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Throughout ¢ denotes an I-relation on A. We say that fe O™ preserves o
([16]) or fis a polymorph of ¢ if fg, ..:g,€0 Whenever all g;€ 9. Here and in
the sequel h =fg, ...g, is the mapping I - A defined by hi =f(g,i)...(g,i)
for every iel. (The correspondence “f preserves ¢” induces a Galois connec-
tion between the set of all closed classes of operations containing all
projections and the subalgebras of a certain naturally defined, but for a > N,
infinitary, algebra on a set of relations ([2], [24])) The set of all feO
preserving g is denoted by Polp. It has been shown e.g. in [24, Proposition
1] that the relations g for which O < Polg can be described as follows:

Denote the set of all (binary) equivalence relations on I by C(I). Given
f: B D, set kerf={(x,y)eB* fx=fy}. For yeC(l) we set 4,
= {fe A'| ker f2y}. Note that 4, is an I-relation on A and that
y €9 = 4, 24,.. The relation U 4, with G = C(I) will be denoted by

4G. Let ¢ be an I-relation on A. Then Polg 2 0" if and only if ¢ = AG
where G < C(I). Moreover Polg =0 if and only if ¢ = AG where G is closed
under intersection ([24, Corollary 1]).

The coordinates (or components) of ae A" will be throughout denoted
by (ay,...,a,). The image of a under the mapping f will be denoted by
fa, ...a, or fa. The image of B = A" under f is denoted by fB; in particular,
for n =2 the image of C xD < A% is denoted by fCD and the images of
{a} xD and C x {a} by faD and fCa. The operations e 0™ (1 <i < n),
defined by ela =a; for every aec A", are called projections ([11]) (other
names: trivial, identity, or selective operations). The set of all projections will
be denoted by J. A closed class containing J is called a polynomial class.

2. A-relations. Let 0 < k < X,. By definition any F < O™, being a set of
mappings A* — A4, is an A*-relation on A. The following statement can be
more or less explicitly found in many papers. The proof is routine and
therefore omitted.

ProposiTION 2.1. Let C be a polynomial class and let D, = PolC® (0
<k < Ng). Then

Dl 202 ) ceey ng) = C(k), C = n Dk‘
k=1

We need also the following equivalence relations ~ on %, we set
M~N < M®»=N®
> .

The relation » was implicitly used by Post ([20]) in his classification of #,.
The relations 3 and 3 on &, (¢ <N,) have been used in [16], [12] in
proving that %, is dually atomic.

ProPOSITION 2.2. The relation + properly contains for every k.

~
k+1
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Proof. This was shown in [20] for « = 2, and we can imbed ¢, into
any Z,,a>2. 0O

Post ([20, p. 46]) observed that each equivalence class of + in &, has a
greatest element and asked whether this holds in general. The answer is
affirmative for every k. Indeed from 2.1 we get:

ProposiTION 2.3. Let M and N be polynomial classes. Then
M3 N < [M%]<cNcPolM®,

Thus PolM® is the greatest element in the equivalence class of 7
containing M. The dual atoms of intervals in & satisfy:

ProPOSITION 2.4. Let H be a polynomial class and let M be a dual atom
of the interval [J, H]. Then M = H n PolM™ where k is the least integer
such that M® < H®,

(We use < for strict inclusion.)

Proof. Since M c H there exists the least k > 0 such that M® < H®),
Let T= HnPolM", Then T< H because by Proposition 2.1 we have T%®
= H® A" M® < H®, From M being a dual atom, M < Tc H and Te &£ we
obtain M =T OO

ProrosiTioN 2.5. Each maximal class is a polynomial class.

Proof. Let M be maximal Suppose that J ¢ M. Then
M c[MuJ] <0 implies [MuJ] = 0. Choose a, be A, a # b, and define
fab =b, fbb =a and fx, x, = x; otherwise. Now feO =[M uJ] has no
fictitious variables and therefore belongs to M (since [M U J] consists of M,
J, and the functions obtained from those of M by adding fictitious variables).
However from f(fx, x,)x, = x, we see that e2e M and therefore J = M, a
contradiction. [

COROLLARY 2.6. Let M be a maximal class. If MY < OW, then M
= Pol MYV, If MV = 0D, then M = PolM® and M® is of the form AG.

Proof. This follows from 2.5, 2.4 (with H = 0), the fact that [0'®] = O
(Stupecki criterion and Lemma 1.1) and the remark towards the end of
Section 1. O

From now on we assume that A is infinite. We are interested in
maximal classes containing O'V). Let Q = {fe 0®: f depends on at most one
variable}. For h,e0® (i =0, 1, 2) let h = hyh, h, be the function from O0?
satisfying hx = hq(h; x)(h, x) for every xe A2. Setting N = M® in Corollary
2.6 we obtain that each maximal class containing OV has the form Pol N
where the AZ-relation N on A is a subset of O® such that J S N c M
=PolN and N =A4G for some G =< C(I). Thus N has the following
properties:

(a) ef, e3eN;
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(b) heN, ge0?, kerg 2kerh = geN,

(¢) heN (i=0,1,2) = hoh, h,eN
(the last one follows since N = (Pol N)?) and therefore is a special kind of
simple Menger algebra ([32]). The sets N = O'® satisfying (a)+(c) will be
called basic Menger algebras. Note that every basic Menger algebra N
contains Q and that he N = h*e N where h* = he3 e? satisfies h* x = hx, x,
for every xeA%. We say that a basic Menger algebra N < 0? is 2-
precomplete if for each he 0'?\N the set 0'® is the least basic Menger
algebra containing N U {h} (i.e, [N U {h}] 2 0® for each he O'»\N).

LEMMA 2.7. A basic Menger algebra N is 2-precomplete if and only if
[N U {h}]® contains an injection for every he O'®\N.

Proof. Necessity is obvious since a > N,. Sufficiency: if [{h} L N]?®
contains an injection, then since OV = N, it follows from Lemma 1.1 that
[{h} UN] =0, whence [(h} UN]? =09, O

THEOREM 2.8. If a basic Menger algebra N is 2-precomplete, then Pol N
is maximal.

Proof. Let geO™\PolN. Then there exist h,,...,h,e N such that
he 0 defined by hx = g(h, x)...(h,x) for every xe A% does not belong to N.
By virtue of (c) in the definition of basic Menger algebras h,e N < PolN.
Thus heB =[{g} wPolN], hence B 2[N u {h}] 2 0® proving B = O (by
Lemma 1.1).

3. A maximal class for regular a. For every feO? let f*c0'® be
defined by f* x = fx, x, for every xe A%. Let G denote the set of all fe 0®
with the property that either f or f* maps each Bx A with Bc A4, |B| <a
onto a set of cardinality less than a. Note that for regular a it suffices to
consider only singletons for B.

LEMMA 3.1. The set G is a basic Menger algebra.
Proof. Clearly it suffices to verify the condition (c) only. Let h,e G (i

=0,1, 2), h=hyh, h, and suppose, for example, that h, and hf have the
above property. Then for every B < A, |B| <a we have

|h* BA| < |ho h* BAR% BA| < |hoy CA| < a

because |C| = |h¥ BA| < a. The other cases are similar. Hence he G. O
THEOREM 3.2. The class Pol G is maximal for each regular .

Proof. We assume that A is the set of all ordinals less than w, (where
@« =w,). By 3.1 and 238 it suffices to show that G is 2-precomplete. Let
he 0'®\G. Because a is regular, there exists a,, aeA such that |ha, 4]
= |hAa,| = a. Using functions from O = G we can achieve that a; = a, =0.
Choose sets A; = A such that 0e 4;, |4 =a (i =1, 2), and h is injective on
(A; x10)U(I0) xA4,). Let T, = {(x,y)eA?: x>y}, T, =A*\T,, and let
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gi€ 0@ be such that (i) g¢|T; is an injection into A; and (i) g¢;(4%\T)
= !0}. It is easy to see that g, € G (because |g, ad| < 1+|{x: x < a}| <a) and
similarly g, € G. Moreover hg, g, €[{h} U G]® is injective and the required 2-
precompleteness now follows from 2.7. O

4. A maximal class for singular . In what follows we suppose that a is
a singular infinite cardinal, and that A4 is a set with |4| = a. A subset C xD
of A% with |C| = |D| = y will be called a y-square. Let F denote the set of all
functions fe O® with the property: (I) There exists a selfmap y (depending
on f) of the set C, of cardinals less than o such that for every Be C,, each y(f)-
square contains a f-square on which f depends at most on one variable.

THEOREM 4.1. The set F is a basic Menger algebra.

Proof. Clearly conditions (a) and (b) in the definition of basic Menger
algebra are satisfied.

Now let hy, h,, hs€F, let h = hy h, h,, and denote the associated func-
tions, whose existence is given by (I), by y;, 72, 73. We shall show that for
the associated function y for h we may take the function vy(f)
=7, (y2(y3(B)*)); here we suppose, as we may, that > N,.

Suppose that C xD = A? and |C| = |D| = y, (y,(73(B)*)). We can find a
set C; x Dy = C xD with |Cy| = |D;| = y,(y3(f)*) on which h; depends on at
most one variable, and then a set C,xD, < C,xD, with |C,| =|D,]
= y5(f)* on which h, depends on at most one variable. If it is the same
variable in both cases, then also h depends only on this variable on C, x D,,
and we are done. Otherwise, we may suppose that on C, x D, the operation
h; depends only on x, say h, (x, y) = g,(x), and h, depends only on y, say
hy(x, y) = g, (»). Since y;(B)* is a regular cardinal, we can find a set C; = C,
with |C;] = y3(B)* on which either g, is constant, in which case h depends at
most on y on C3xD, and we are done, or g, is injective, as we may
therefore suppose. Similarly we can find a set D3 = D, with |D;| = y;(8)* on
which we may suppose g, injective. But now |g, C3| =|g; Ds|
=793(B)* > y3(B), so we can find a set C, xD, =g, C; xg, D3 with |C,|
= |D,| = f on which h; depends on at most one variable. Upon taking C,
=C3ng; ' (Cy), Do =D3ng;'(D,), we have CyxDy = C xD, |Cy| = |Dy|
= B, and h depends on at most one variable on C, xD,. Thus F satisfies
condition (c), and is therefore a basic Menger algebra.

In order to prove that F is also 2-precomplete, it is convenient to
express the defining property in a somewhat different form; to do this we
appear to need to assume the generalized continuum hypothesis (GCH).

THEOREM 4.2 (GCH). The following three properties are equivalent for
fe 0'?,
(I) For every cardinal B < a there exists a cardinal y = y(f) < a such
that each y-square contains a B-square on which f depends on at most one
variable.



OPERATIONS ON UNCOUNTABLE SET 7

(I) There exists a cardinal B < a such that f is injective on no B-square.
(II) f is not injective on any disjoint union of P;-squares (i€ I) such that
Il <o and Y B =a.
iel
Remark 43. It would be easy to show that assuming GCH the
following property is also equivalent to (I); however, we shall not need this
fact.

(V) fis not injectibe on any disjoint union ) (C;xDy) < A? where
iel, jel

ICiyl = Bi <a, IDyl = B; <a, |I| <a, and Z Bi=a.
iel
Proof of theorem. Since obviously (I) = (II) = (IIl), it would be
enough to prove (III) = (I); but it is convenient to prove (III) = (II) and
(In = ().
() = (II). Writea = ) f, where ¥, <f, <p, <... <a and each

<o

B is regular. If (II) is false then for each 0, f is injective on a fg-square

Cs xDg. Define sets Sy = {J (C} xD}). Because B, is regular we have
v <6

ISel < Y. B, < Bo, hence there exist By-squares Cyx Dy = (C¥ x D§)\Ss. Now
v <6
f is injective on the disjoint union of the squares Cy4 x Dy, so (III) is false.
(I) = (I) (GCH). Let (II) hold and let B, < a be an infinite cardinal
such that f is not injective on any B,-square C x D. We show that (I) holds
with y(f) =B***** (this could be decreased by a more careful argument)
supposing, as we may, that B> B,. Given a g*****.square CxD Ilet
D, = D satisfy |D,| =B***. For-every fixed ac A define f,, f°: A > A by
setting f,(x) = fax and f°(x) =fxa for every xe A. Let

C* = |xeC: f, takes some value f*** times on D,},

and C** = C\C*. If xeC*, choose a set D,(x) < D, with cardinal g*** on
which f, is constant; if xe C**, then f, takes B*** values on D,, and we
choose a set D,(x) = D, with cardinal 8*** on which f, is injective. Choose
C, =C with |C,|=p****"* and either C, < C* or C, < C**. Assuming
GCH, there are only f**** subsets of D,, so we can choose C,xD, <
C, xD, with |C,| =|D,] =B**" and D,(x) = D, for all xeC,. If C, = C*
we are done, since f depends at most on x on C, x D,, so we may suppose
that C, = C** and f,|D, is injective for xeC,.

Arguing the same way with x, y interchanged, we get a set C3; xD;,
< C, x D, with |[C3] =|D;s| = B on which either f depends only on y, and
we are done, or (as we may suppose) f” is injective for each y.

Let D, < D,, |D4| = B. No value can be in f, D, for more than g values
of xeC,;, because otherwise f(x;, y) =f(x,, y) for two different values
X, X, €C5, and some ye D,, making f” non-injective on C;. Let f =N, let
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< be a well-ordering of C, of type w,+,, and for 0 < ¢ < w, let x(g) be the
least (with respect to <) element of C; such that

fx(o)D‘tnU tfx(a)D4 <0 <Q, =Q.

Let C, = {x(0): 0<¢ <w,}; then f is injective on C, xD,, contrary to
hypothesis. The proof is complete. 0

THEOREM 4.3 (GCH). The set F is a 2-precomplete basic Menger al-
gebra; consequently PolF is a maximal class in O containing OV,

Proof. The set F being a basic Menger algebra by Theorem 4.1, in
view of Lemma 2.7 it will be enough to show that if he O®\F, then
[{h} U F]® includes an injection.

Let h be injective on the disjoint union of f;-squares C; xD; (i€l |I|
<a, and Y B; =a; see Theorem 4.2, property (III)). It will be enough to

iel
construct two functions h,, h,eF such that the mapping (x, y)
— (hyxy, h, xy) is an injection from A? to U (C; xD), since then clearly

hhyh, is an injection belonging to [{h} uF]‘Z’
We may suppose that |I| = cfa = N, say, that I consists of the ordinals
less than w,, and that w, < f, <p; <... We can write A = (J 4; where

iel
A;c A; for i <j. Let u;: A; = C; and v;: A; — D; be injective (iel). We can
now define h, and h, as follows. For any (x, y)e A% let i be the least ordinal
such that (x, y)e 42, and then let h,(x, y) = u;(x), hy(x, ¥) = v;(y). It is easy
to see that these functions have the desired properties; in particular, the fact
that h, takes only N, values in each row and h; only N, values in each

column obviously implies that they belong to F. O

5. A counter-example. Two strictly increasing sequences <b,);<,, and
{€iDi<w, In A determine a lower trzangle 4 ={b;,c): p<i<w,} and an
upper tnangle {(bs, c): A< pu<w,} in A% Let T denote the set of all lower
and upper triangles and set

H={fe0?: f|4 is injective on no deT}.

For v = 0 Gavrilov showed that Pol H is a maximal class in Ky . The proof
is based on a lemma asserting that for any fe H and 4e T there exists 4’€ T,
A’ < 4, such that f| 4’ depends on at most one variable. Unfortunately the
proof fails for v > 0; and in fact we prove the following result, assuming the
continuum hypothesis (CH).

ProrosiTioN 5.1 (CH). For v=1, H is not a basic Menger algebra.

Proof. In view of Corollary 2.6 and Lemma 2.7, it will be sufficient to
establish the existence of hq, h,, h,€ H such that hyh, h, ¢ H, and this is an
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immediate consequence of the lemmas below: with the notation of both
lemmas, take h, =e?k, h, = ek, and take as hy,: A2— A any function
injective on the set S and constant on 4%\S. O

LemMMA 5.2. There exists a subset S of A% that has N, elements in each
row and each column of A2, but contains no set B, x B, with |B,| = |B,| = 2.

Proof. Let {4,),<.,, be a sequence in which each element of 4 appears
N, times, and let S consist of all elements (0, Ag) and (4,, 0) with 4, < 0;
evidently S has N, elements in each row and each column of A% Now we
show that if a, <a, <w, and B, < f, <w; then not all of the elements
(¢, B;) can belong to S. If a; < B,, then neither of the elements (a;, B,),
(a5, B2) can be of the form (8, Ag) with 44 < 0, and of course at most one of
them is the element (44,, B;), so they do not both belong to S. The case
®, > B, can be treated in a similar way and the lemma is proved. O

Lemma 5.3 (CH). If S < A% has N, elements in each row and each
column, then there exists an injection k: A*> - S such that e?k, e2keH.

Proof. With each (lower or upper) triangle 4€ T associate the set ¢
consisting of the elements in the first w, rows and first wy columns of 4, and
call it the (lower or upper) starter of 4; let T* denote the set of all starters.
Each starter being countable, we have |T*| < N?O = N,, assuming CH, and
thus we can list the elements of T* as <4, <a,-

For any 0 < w,, let

Co=1{(x,y): max(x,y)=0} and Dy={) {C,: ¥ <0}.

Let 0, be the least ordinal such that there are infinitely many lower and
infinitely many upper starters , < Dy, With ¢ < 0,. First, define k| Dy, in an
arbitrary way as an injection into S. Since the sets C,, 6, <0 < w,, are
disjoint and their union is A2 \ Dy, it will now be sufficient to define k| C4 by
transfinite induction on 6 for 6, < 6 < w;,.

Suppose, then, that 6, < 0 < w, and that k: Dy, »S has already been
defined and is injective. There are N, lower respectively upper starters
0, S Dy with ¢ <0; list them as

<60 (zm) >m <wg respective]y <60 (2m + 1)>m <wg*

Define elements (xq(n), yo(n))€ Cy, together with the corresponding values of
k, by induction on n as follows.

If n=4m or 4m+ 1, we set x4(n) = 0, define y,(n) to be the least ordinal
in the set e3[6p(2m)]\{ye(w): 1 <n}, and choose. & (n) so that
(o(n), Yo(n))€d9(2m). For n = 4m respectively 4m+ 1, we select as kx,(n) ys(n)
any value of the form

(ef ko(n) yo(n), q)  respectively  (p, e2 k&y(n) yo(n))
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in the set
3 (S\k [Dg])\ tkxo(1) yo(p): p <nj;

such an element exists because S has ¥X; elements in each row and each
column.

* Similarly, if n =4m+2 or 4m+ 3, we set y,(n) = 0, define xy(n) to be the
least ordinal in the set e?[do(2m+1)]\{xe(1); u < n}, and choose n4(n) so
that (x,(n), 7e(n))€84(2m+1). For n = 4m+ 2 respectively 4m+ 3, we select as
kxg(n) ye(n) any value of the form

(€1 kxg(m)mg(n), q)  respectively  (p, e3 kxo(n)no(n))

in the set (3).

Clearly, as now defined on Dy U {(x4(n), yo(n)): n <o}, k is injective.
Finally, on Cy\ {(xs(n), ys(n)): n < w,} we assign to k arbitrary values in S
subject to the requirement that k|(D,u Cg) be injective; this is possible
because |S| =N

The inductive deﬁnition of k on A2 is now complete, and it remains only
to show that e? k and e k belong to H. Consider for example the former, and
let T be (for example) a lower triangle {(b,, c,): 1 < A < w,}, with starter §,.
Choose 4, > wo so large that b, > and b, > 6,. It will be sufficient to
show that e?k is not injective on the subset U 0o Y {(bags €p): 1 <o} of
T. Write 0 for b‘l , and let J, be listed as d,(2m). Then by the construction of
k, we see that e} kOy,(n) = e2 k&y(n) yg(n); since (6, yo(n)) and (&p(n), ye(n)) are
distinct elements of U, our assertion is proved. O
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