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ON SOME PROPERTIES OF POST ALGEBRAS
WITH COUNTABLE CHAIN OF CONSTANTS

BY
HALINA SAWICKA (WARSZAWA)

Post algebras play the same role in many-valued logics as Boolean
algebras do in the classical logic. - Viewed as algebraical systems with
n > 2 constants, Post algebras were introduced in 1942 by P. C. Rosen-
bloom. In papers of C. C. Chang, Ph. Dwinger, G. Epstein, H. Rasiowa,
G. Rousseau, T. Traczyk and E. Wlodarska such algebras were later
examined or applied to metalogical problems of m-valued logics.

The class of algebras which are coproducts of a Boolean algebra
and of a lattice fulfilling some additional conditions — as introduced by
Dwinger (see [1]) — is a generalization of the concept of Post algebras
of any finite order » > 2.

Generalized Post algebras which are coproducts of a Boolean algebra
and of the interval <(0,1)> were characterized by Traczyk (see [8]) as
distributive lattices with the greatest and the least elements, and with
a set of zero-argument and unary operations satisfying a system of axioms.
Such a characterization is possible for any Post algebra which is a co-
product of a Boolean algebra and of a linearly ordered set T with the
least and the greatest elements. Analogous to the definition of Post al-
gebras of order n > 2, introduced by Traczyk (see [6]), such a character-
ization allows to transfer certain theorems on Post algebras of a finite
order to the case of generalized Post algebras.

The purpose of this paper is to present a generalization of the Loomis-
Sikorski theorem and of the Rasiowa-Sikorski lemma which were proved
for Post algebras of any finite order by T. Traczyk and E. Wlodarska,
respectively, to the case of Post algebras with a countable chain of con-
stants.

1. Characterizations of generalized Post algebras. Let P be a distrib-
utive lattice with zero and unit elements (A, v) and let B be the Boolean
algebra consisting of all complemented elements of P.

Definition 1.1. P is a generalized Post algebra of type T, where T
is an arbitrary linearly ordered set with the greatest element 1 and the
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least element 0, if and only if there exists an indexed set {¢,},., of elements
in P and an indexed set {D},.r of unary operations on P such that the
following conditions are satisfied:

Pl. ¢ = A; e, = v; for arbitrary ¢, t'eT, if t<<t', then ¢ <e.

P2. Dy(x) = v; Dyx)e B for every teT; for arbitrary ¢, t'eT, if
t< t', then Dy(x) > D, (x).

P3. z = (P) U Dy(x) Nne, for every xe P ().

teT
P4. If, for every teT, a4 B, ay = v and a,> a, for t<t, then

there exists the join z = (P) U a,Ne;, and a, = D,(x) for each teT.
teT

The algebra defined in this way will be denoted by P = {{e};cr; B).

It can be easily checked that P is a sublattice of the Cartesian product
of an indexed set {B;};.r consisting of copies of the Boolean algebra B
(for each te T, B, = B) (for a proof, see [8]).

LeMMA 1.1. Let P satisfy conditions P1-P4 and let z, y « P. The following
statements hold true:

(@) Dy(2)VDy(y) = Dy(xVy).

(b) Dy(w) NDy(y) = Dy(x Ny).

(¢) <y if and only if D,(x) < Dy(y) for each teT.

(d) Dy(a) = a for every ae B and for every t > 0.

(e) D,(ey) = Vv for t<t and Dy(ey) = A for t >1.

(£) If z;e B for every ie I, then the join (P) U x; (the meet (P) () @;)
iel el
exists if and only if it does exist in B. If they do exist, they are equal.
(g) If w;e P for every ie I, then the join (P) \UJ x; (the meet (P) (N x;)
i tel iel
exists if and only if the join (P) \J D,(x;) (the meet (P) () Dy(x;)) does ex-
iel . iel
ist for every te T. If it exists, then Dy((P) U @;) = (P) U Dy(@;) (D, ((P) M )
— (.P) Q -Dt(mi))° iel iel iel
The proof is analogous to that in [8].

Definition 1.2. P is a P,-lattice of type T, where T is an arbitrary
linearly ordered set with the greatest element 1 and the least element 0, if
and only if there exists an indexed set {e;};.r of elements in P such that:

QL. ¢ = A; 6, = Vv, for arbitrary ¢, t'eT, if t<<t', then ¢ <e¢,.

Q2. z = (P) U 2,ne; for every xe P, where the indexed set {r;};.r
teT

satisfies the condition
(a) ®y = Vv; x;e B for every te T'; for arbitrary t,t' e 7, if ¢t < ', then
&y > Ty

(1) If {x}ter is an indexed set of elements in a Post algebra P (in a Boolean
algebra B), then the symbols (P)| ) = ((B)\J =) and (P)(\xz ((B)( )z will
teT - teT teT tel

denote the join and the meet of all a; for teT in P (in B), respectively.
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Q3. If an indexed set {x,};., satisfies condition (a), then there exists

the join = = (P) U #;Ne,.
tel

LEMMA 1.2. Let P be a P-lattice of type T and let an indexed set {2} r
satisfy condition (a) in Q2. Then there is ((P) U ,6)Ne .= (P) U a6
teT <t

for every t' e T ().

Proof. Let us denote (P) U x¢, by N and ((P) U 2,¢)ne, by

<t teT
M. Since N = (P)U e, < (P) U ¢, and N = (P) |J e, < (P) U ¢
t<t’ teT <t <t
= ¢,, we have N < ((P) U we) ne, = M.
teT

On the other hand, since {x;};,.r satisfies condition (a) in Q2, we

obtain (P) U #e, < (P) U 2,6,V a,. Hence we have M = ((P) | x,¢) Ne,
teT t teT

<t
<(P) U zevrpe, = (P) U w6, which completes the proof.
<t’ '

<t i<t
Definition 1.3. Let P be a P, lattice of type T. If an indexed set
{z;};.r of elements in P satisfies condition (a) in Q2 and z = (P) U =,
teT

for some z ¢ P, then {z;},.p is called a representation of the element z in P,
THEOREM 1.1. Py-lattice of type T is a generalized Post algebra of type T
if and only if it satisfies the condition
Q4. If ae B and ane, < (P) U ¢ for some t'e T, then a = A.
t<t’

The proof of this theorem is preceded by the following

LEMMA 1.3. If P satisfies conditions Q1-Q4, then the representation
of each element in P is unique, that s, if {x},.p and {y},.p are representa-
tions of the same element, then x, =y, for each teT.

Proof. Suppose that there exist indexed sets {x;};.r and {y};.r
which satisfy condition (a) in Q2 and are such that

w=(P)Uze and x=(P)U ye.
teT teT

. Let z,, +* y, for some t'¢ T. Since x, and y, belong to B, there exist
in P elements —x, and —y,. In virtue of lemma 1.2,

xNey = (P) U we, = (P) U w64,
t<t’ <t
whence
zpep < (P) U w6

<t

Thus
(—ypr)@per < ((P) tL<)t Yie) N (—yy) = ((P) t\.{ ?/tet) N(—y)
< (P) Hlytet <(P)U 6.

<t
(3) zy denotes the meet of xz and y as well as zNy.
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Since P satisfies condition Q4, (—y,)x, = A. Replacing z, by y,,
we get (—x)yy = A. Thus o, =y, q.e.d.

Proof of the theorem. Let P be a P,lattice of type T and let P
satisfy condition Q4. We shall show that P satisfies conditions P1-P4.
Condition P1 is obvious. Define an indexed set of unary operations on P
by setting D,(x) = x;, where {z;};.r is a representation of an element x.
According to lemma 1.3, this definition is correct and conditions P2-P4
are trivially satisfied. _

Now let P be a generalized Post algebra of type 7. P is evidently
a P, lattice of type T and we shall show that P satisfies condition Q4.

Suppose that ae, < (P) | ¢; for some ae B and some t'e 7. Using lemma
<t
1.1, we obtain

.Dt,(aet:) = Dt,(a) nDt/(et') = q < .Dt/((.P) H’ et) = (P) tL{ D,:(et) = A )
: < <t
whence a = A, q.e.d.

2. Representation theorem. Let P = {{¢};.; B> be an arbitrary
(but from now on fixed) Post algebra of type 7. An ideal 4 in P is said
to be of order t' if and only if (P) (U ¢;¢ 4 and e, ¢ 4.

t<t’

Let X, denote a set of all prime ideals in the Boolean algebra B and
let X, denote the set of all prime ideals of order ¢ in P for each te T. We
define the mapping ®D,: X, - X, for every tc 1 by the formula &,(4)
= ANB. It is easy to verify that

(a) @D; is a one-to-one mapping and its range is X,,

(b)- for each te T, if Ae X,, then xe 4 if and only if D,(x)e 4 NB.

' Now, for each ae B, put ho(a) ={de Xy: a¢ 4}, h(a) = U D7 (ko(a)),
teT
Fy = {hy(a): ae B}, F = {h(a): ae B} and X = {J X,.
- teT
The set F defined by the last but one formula is a field of subsets

of the set X, and & is an isomorphism of the Boolean algebra B onto F.
If we consider the set X as a topological space, with the set I as a sub-
basis, then X is a compact Hausdorff space, F' is the class of all both
closed and open sets in X and X, is a dense subset of X for each teT.
The topological space X is called the Stone space for the Post algebra P.
Let B, =0, E, = (J X, for t'«¢T and let B be the P,lattice of

t<t’

sets determined by an indexed set {E;};,.r and by the Boolean field F.
Then R is a Post field of sets of type T isomorphic with the Post algebra P.
The proof is similar to that in the case of Post algebras of finite

order.

3. The Rasiowa - Sikorski lemma for generalized Post algebras. Let
P = {{e}1.r; B) be a generalized _Post algebra of type 7, where T < N,.
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Let (@) be an enumerable set of infinite joins and meets in P,
(@) ={m: @ = (P) U Bifeen YWkt Y = (P) ) Yibkens
leL'y leL"y,

and let (D,Q) for te« T be the set of infinite joins and meets in B,

(DQ) = {ax: af = (B) U a;c,l}keNU{b;c: b, = (B) N bgc,l}keN7
leL leL"y

where N is the set of positive integers, L; and L, are arbitrary sets and,
for all te T, ke N, we have a’, = Dy(x), b} = Dy(y), at; = D,(x;,;) and
bgc,l = Dy(Yx,)-

Definitions of @-ideals and D,Q-ideals are the same as in [9].

The existence of @-ideals of order ¢ for each ¢ T in algebra P follows
from the existence of D,Q-ideals for all te T in the Boolean algebra B.

Let X2 for every te T denote the set of all D,Q-ideals in B and

let X? denote the set of all Q-ideals of order ¢ in P. Put X, = | X7.
teT

Then X, is a dense subset of the Stone space X for the Post algebra P.
Let B(X,) be the class of all sets of the form |J &;'(U)nX? for

. teT
all Ue I',. The class B(X,) is a field of sets.

Now let R, be the class of all subsets of X, of the form \J 4,E?,
teT

where EY = @ and E? = | X? for each t'<T. Let an indexed set {4};.p

t<t’
satisfies the condition

(a) Ay = Xg; Ase B(X) for every {eT; for arbitrary ¢, 1, if ¢t <1/,
then 4,> A,.

Then E, is a generalized Post field of sets of type T.

Define a mapping h} from the Post algebra P into Post field R,
by the formula

h§ (@) = U ho(Di(@) N EY,

where hg(a) = h(a) NXg is an isomorphism from the Booléan algebra B
into the Boolean field of sets B(X,). Then h§ is a @-isomorphism (i.e.,
an isomorphism preserving joins and meets in ()) from the generalized
Post algebra P of type T into the generalized Post field of sets R, of
type T. This proves the following '

THEOREM 3.1. For every enumerable set (Q) of infinite joins and meets

in a generalized Post algebra of type T, where T < N, there is a Q-isomorphism
from this algebra into a generalized Post field of sets of type T.

Proofs of all facts in this section are analogous to those for Post
algebras with the finite chain of constants. ‘

4. The Loomis - Sikorski theorem for some generalized Post algebras.
Let 9 be a fixed infinite cardinal number.
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Definition 4.1. A subset H of a topological space X is said to be
M-closed if it is the intersection of at most M sets, both closed and open
in X.

Definition 4.2. A subset H of a topological space X is said to be
M-nowhere dense if it is a subset of a nowhere dense INR-closed set.

Definition 4.3. A subset H of a topological space X is said to be
of the IM-category if it is the union of at most M sets IM-nowhere dense
in X.

Definition 4.4. A Boolean I-algebra (i.e., an IM-complete algebra)
is called IM-representable if it is isomorphic to a quotient algebra F'/A4,
where F' is an IM-field of sets and 4 is an M-ideal of F.

Definition 4.5. A generalized Post algebra of type T is IN-represent-
able if it is isomorphic to a quotient Post algebra R,/4,,, where R,
= {E}r; F,> i8 a Pylattice of sets of type T, F,, is a Boolean I-field,
and 4, i3 an YR-ideal of sets in F,,.

Let P = {{e;}s.p; B) be a fixed generalized Post ¥-algebra of type T,
where T <M, let R = ({E};.r; F> be a generalized Post field of sets
of type T, isomorphic to P, and let h be an isomorphism from P onto E.
F,, denotes the least IM-field of subsets of Stone space X containing F,
and 4,, denotes the INR-ideal of all sets in F,, of the IM-category.

LeMMA 4.1. F,, coincides with the class of all subsets of X of the form
HUNNN', where He F and N,N'e 4,,.

LEMMA 4.2. Let a Boolean algebra B be IMM-representable. If A NE,. = (JE,

<t
for some AeF,, and some t' T, then AecAd,,.

Proofs of lemmas 4.1 and 4.2 are similar to those in [7].

Now let us denote by R,, a P,lattice of sets of type T determined
by an indexed set {¥,},.,» and by the Boolean field of sets F',,, R,, = {{E;};cr;
F,>.

We define in R,, a relation ~ in the following way: for A = {J A, E,
teT

and A" = |J A,E,, there is A ~ A’ if and only if 4,\ 4;UA4;\ A,e4,,
teT
for every teT.

LeMMA 4.3. If a Boolean algebra B is IR-representable,
A = U AtEl a”d .A. = U A;Et’

teT teT
then

U A,E, ~ H A;Et-

teT

Proof. By lemma 1.2 we have

AEV = t‘L/Jt’ ‘A'tEl = tL<'{, A;.Et,
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whence
(—A4p) A By < (—4p) 0 U 4E,< U 4,E,< U E,.
i<t t<t’ t<t’
And by lemma 4.2, (—A;)Aype A,,. The proof that (—A4,)A4,€ 4,,
is analogous. Consequently, A,\ 4,UA4,\ A€ 4,, q.e.d.
In the next lemmas we assume that B is an IR-representable Boolean
algebra.

LEMMA 4.4. The relation ~ is an equivalence and it is a congruence
with respect to the operations U and N.

The easy proof is omitted.

By R, /4, we denote the set of all residue classes of the relation ~.
It is easy to verify that R, /4,, is a distributive lattice with zero and unit
elements under the following operations:

[X]JU[Y] =[XU¥Y] and [X]n[Y]=[XNT].

LEMMA 4.5. Let K be an arbitrary set of the cardinality K < MM and
let
A = U AtEt and 'Ak = U Ak,tEt
teT

‘teT
for ke K be arbitrary elements of R,,. If

keK keK
then

[4] = U [4:] ([4] = N [4:]).
keK keK

Proof. It is easy to verify that [A] < [B] if and only if 4,\ B,¢ 4,,

or every teT. Assume that [4;] < [§] for each ke K, where 8 = | 8, E;.
teT

Hence 4,,\8;c 4,, for every ke K and te<T. Since 4, is an IM-ideal,
it follows that (_J A\ S;e 4,, for each t¢T. Thus, in virtue of lemma 4.3,
teT

[4] = [tL% A4E] =[U U4, E]<[8], qed

teT keK

LevmA 4.6. R, /A4, = {[EJ}ier; F |/ i8 a generalized Post algebra
of type T.

Proof. Since R,/4,, is a distributive lattice with zero [@] and unit
[X] elements, it is sufficient to show that R,/A4,, satisfies conditions
Q1-Q4.

Q1 is obvious.

Q2. Let [A]e R, /4,,. Since Ae¢R,, we have A = | J A,E,;, where
an indexed set {A4,};.r satisfies the condition beT

(a) Ay = X; A,e F, for each teT'; for arbitrary ¢,t' T, if t ¢,
then A4, > 4,.
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In virtue of lemma 4.5,
[4] = H [4:1[E:],

where {[A,]};.r satisfies analogous condition as {4,};.». Therefore, R, /4,,
satisfies condition Q2.
Q3. Let an indexed set {[A4;]};.p satisfy condition (a). We shall show
that there exists an element A e R, such that
[4] = Hp [41[E].

Since F',, is an IR-field of sets, there exists a meet () 4, = 8, for
t<t’

each t'e¢T. In virtue of lemma 4.5,
[8:1=[N 4] =) [4] = [4,].
<t <t

Now, since {S‘},(T satisfies condition (a) in Q2, there exists the union
A = 8E, in R,. Using again lemma 4.5, we infer that

teT
[4] = t&% [S;1[E] = tg [4]1[E], q.ed
Q4. Let [A]e F,, /A4, and [AE,]< U’ [E,] for some t'eT. We shall
show that then [A] = [@]. Using lemma 5, we get U (Bl =[U E].
Since [AFE,] <[ U E,], we have = =

t<t

(AEB,VUE]=[UE] AE.vUE,=U BE,
oz t<t’ t<t’ teT

where B, = X for t <t', B, = A and B, = @ for other ¢{¢T. According
to the definition of the relation (~), if | B, B[ U E,], then B,\Qe4,,.
teT t<t’

Since B, = A, consequently 4eA4, and [4] = [D], q.e.d.

THEOREM 4.1. The generalized Post M-algebra P = {{e};.7; B) of
type T is M-representable if and only if the Boolean algebra B is M-repre-
sentable. ' B

Proof. Since the algebra P is 9i-complete and IM-representable, so,
by the definition, is B. To prove the sufficiency we define a mapping b
by the formula k(a) = [hy(a)] for ae B. It is easy to verify that k is an
M-isomorphism and that h maps B onto F,/4,. The isomorphism h
may be extended to an isomorphism A* from algebra P into R,/A4,,.

Let

z, = U Dy(wy) e
teT

belong to P for ke K, where K < I, and let
B* () = tL% i"(Dt(mk)) N[E,].
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We shall show that A* is an I-isomorphism. Let # = (") ;. Using
keK
lemmas 1.1 and 4.5, we obtain the following chain of equations:

\

h*((v) = h*( o) = H' ﬁ(Dg(k@ wk)) N[E;] =tU N h(Dt(wk)) N[E,]

keK eT keK
=N U i”(Dt(mk)) N[E] =N h*(“'k)-
keK teT keK

In a similar way one can show that if y = (U v,, where y,¢ P and
_ keK
K <M for each ke K, then
R*(y) = U B (y5).

keK

Since by hypothesis # maps B onto F,,/4,,, it follows that »* maps P
onto R, /4, . This completes the proof.

COROLLARY. Since every o-complete Boolean algebra is o-representable,

every generalized o-complete Post algebra of type T, where T < Noy 18 o-repre-
sentable.
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