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PREPARACOMPACTNESS AND N-PREPARACOMPACTNESS
IN ¢-S8PACES

BY
ROBERT C. BRIGGS, III (COOKEVILLE, TENNESSEE)

The purpose of this paper* is to define two properties, preparacom-
pactness (ppc) and N-preparacompactness (X-ppe), and to compare them
with paracompactness and collectionwise normality in various g¢-spaces.
Preparacompactness is a generalization of paracompactness in much the
same way that countable compactness is a generalization of compactness.
In fact, in the spaces studied, ppc is equivalent to paracompactness only
when countable compactness is equivalent to compactness. In a given
space, the implications of ppce depend more heavily upon the topological
structure of the space than upon the definition. (A ppe regular developable
(Moore) space is metrizable, while a ppe regular ¢g-space need not be nor-
mal.) N-ppc is a generalization of ppc. Although, in regular g¢-spaces,
N-ppe need not imply ppe, their known implications relative to paracom-
pactness and collectionwise normality are the same. In Hausdorff ¢g-spaces,
N-ppe is substantially weaker than ppe. (If a ¢g-space is Lindelof and ppe,
it is paracompact; an X-ppc Lindeldf g-space need not be regular.) Summa-
ries of the relationships between ppe, N-ppe, paracompactness and collec-
tionwise normality are given at the beginning of each numbered section
of the paper.

Definitions, terminology and notation. A Hausdorff space S
is preparacompact (N-preparacompact) if and only if, for each open cover @
of 8, there exists an open refinement H covering S such that if {h, | ae A}
is an infinite (uncountable) subcollection of distinct elements of H; if p,
and g, eh,, for each a4, p, # ps and q, # g, for a # f; and if the point
set {p, | aeA} has a limit point in 8, then the point set {g, | aeA} has
a limit point in S.

A topological space S is sald to be a g-space if and only if, for each
point p of S, there exists a sequence {N;}:2, of neighborhoods containing p

* This paper contains a portion of the author’s dissertation, University of
Houston, August 1968. In the dissertation, ppe is called strong cover compaciness, and
N-ppc — weak cover compaciness.
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such that if y;eN,; for each ¢, and y; # y; for ¢ # j, then the point set
{y;} has a limit point in S (see [9]).

For the definition of #,-screenable, see [6]. For all other definitions,
see [10]. All spaces in this paper are assumed to be Hausdorff. If M and N
are sets, M— N ={p|peM,p¢N}. If G is a collection of sets, G* =
U{g19eG}. It M is a point set, C1(M) is the closure of M. w denotes
the first infinite ordinal, and £, the first uncountable ordinal.

1. F,screenable ¢-spaces. In a regular F -screenable g-space, pa-
racompactness, collectionwise normality, ppc and N-ppc are equivalent
(Theorem 4). It follows that a ppc (N-ppe) regular semi-metric space
is paracompact, and a ppc (X-ppc) Moore space is metrizable (Corollary 4).

LeEMMA 1 (Stone [11] and Bing [1]). If a space is paracompact, it is
collectionwise mormal.

LeMMA 2 (McAuley [6]). If a space is collectionwise mormal and F -
screenable, it i8 paracompact.

LemmA 3 (Michael [7]). If a space is collectionwise nmormal and me-
tacompact, it 18 paracompact.

The proofs of Theorems 1 and 2 follow immediately from the defi-
nitions.

THEOREM 1. If a space 18 paracompact, it t8 ppc and R-ppe.

THEOREM 2. If a space is ppc, it is N-ppc.

THEOREM 3. Let 8 denote an F,-screenable q-space and let G denote
an open cover of 8. If H is an R-ppc refinement of @, then some subcollection
of H is a o-closure preserving open cover of S.

Proof. Since S is F,-screenable, let X = {X,}{2, denote a refine-
ment of H such that, for each 4, X; is a discrete collection of closed sets
refining H and {X;}* = 8. If some countable subcollection of H covers S,
it is the desired collection. If not, X is the union of two subcollections X’
and X'’, where X;eX’ if and only if some countable subcollection of H
covers X;. Clearly, there is a o-closure preserving subcollection of H
covering X'**. We will show the same is true for X'’ by constructing, for
each X,;eX", a closure preserving subcollection H; of H which covers Xj.

Let X; denote an element of X', and, for each xeX;, choose h(x)
to be an element of H containing z. Let H; = {h, | h, = h(x) for some
xeX,}. Assume H; is not closure preserving. Then there is a point peS
such that p eCl({h,}*)—{Cl(R,)}*. Since S is a g-space and p¢Cl(h,), for
any a, there is a countable subcollection {;} of H; and a sequence of
points {p,} in S such that

(1) p;eh; for each ¢,
(2) p; # p,, and h; #~ hy for ¢ # k, and
(3) the point set {p;} has a limit point p’ in 8.



PARACOMPACTNESS 229

Since, for each ¢, h; = h(x;) for some x;e¢X;, let g¢;eh;Nw;. Since
the elements of {h;} are distinct, the elements of {z;} and {q;} are distinct.
It follows that, for each ¢, p; and ¢; eh; and {p;} has a limit point p’ in S,
while {¢;} does not. To obtain a contradiction, we must extend each of
these countable sets to uncountable ones.

Since no countable subcollection of H; covers X;, there is an uncount-
able subcollection {h;} of H; —{h;}, an uncountable subcollection {z,}
of X;—{z;} and an uncountable point set {g,} in 8 such that

(1) h, = h(z,) for each a,

(2) q,eh,Nz, for each a, and

(3) hy # hy, @, # x5 and g, # gp for a # .

It follows that H = {k,)}U{h.} is an uncountable subcollection of
distinct elements of H, P = {p;} U{q,} and @ = {¢;} V{q,} are uncountable
point sets, each point belonging to a correspondingly indexed element
of H, and P has a limit point p’ in §, while @ does not. This is contra-
dictory, hence H; is closure preserving.

CorROLLARY 1. If a regular F,-screenable g-space is N-ppe, it is pa-
racompact.

Proof. Since every open cover of 8 has a o-closure preserving open
refinement, S is paracompact (see [8]).

THEOREM 4. In a regular F,-screenable g-space S, the following state-
ments are equivalent:

(1) S 48 paracompact.

(2) 8 s collectionwise normal.

(3) S 48 ppc.

(4) 8 78 N-ppe.

Proof. (1) is equivalent to (2), by Lemmas 1 and 2. (1) = (3) — (4)
— (1), by Theorems 1 and 2 and Corollary 1.

COROLLARY 2. In a regular semi-metric space, paracompaciness, collec-
tionwise normality, ppc and N-ppc are equivalent, and in a Moore space
each 8 equivalent to metrizability.

Proof. A semi-metric space is F -screenable (see [6]). A Moore

space is a regular semi-metric space (see [3], p. 103-119) and, in a Moore
space, paracompactness is equivalent to metrizability (see [1] and [11]).

Note. A paracompact regular semi-metric space need not be metriz-
able (see [5]).

2. Normal ¢-spaces. In a normal ¢-space, paracompactness implies
ppc, N-ppc and collectionwise normality (Lemma 1 and Theorem 1).
None of the converse implications hold (Example I).

Both ppc and N-ppc imply collectionwise normality (Theorem b5

5 — Colloquium Mathematicum XXVII.2



230 R. C. BRIGGS, III

and Corollary 3), but not conversely (Example IT). Example III is given
to show that Theorem 5 cannot be extended to normal Hausdorff spaces.
It is not known whether ppc and N-ppc are equivalent in normal
g-spaces (P 830).
THEOREM 5. If a normal g-space is N-ppce, it is collectionwise normal.

Proof. Let X = {X_, | acA} denote a well-ordered discrete collection
of closed point sets in S. (We can assume X is uncountable, since a normal
space is collectionwise normal with respect to countable collections.) For
each aeA and each point peX,, let O, denote an open set containing p
such that C1(0,)N(X —X,)* = @. Then {0, | peX,,aed}U(S—X") is an
open cover of § and has an N-ppc refinement H. For each aed, let H,
={h|heH, hNnX, # O}.

We now prove that for each X, ¢X; we can construct an open set
D, o X, as follows.

Let B, = [{Ds | B < a}U(X —{X; | B < a})]*. Let D, and D, denote
open sets containing Cl(B,) and X_, respectively, such that Cl1(D,)NCl(D.)
= @. Let D, = D,nH,. It is easily shown that if D, can be constructed
for each aed, then D = {D, | acA} is the desired collection of open sets
covering X.

Assume that, for some X,e¢X, D, cannot be constructed. Let X,
denote the first such element. Then, since § is8 normal, X, and Cl(B,)
are not mutually exclusive. Since, for g < y, X,NCl(D;) = G, there is
a point p, X, such that p,eCl({D; | f < y}*)—{Cl(Dy) | B < y}"*. Since 8
is a g-space and p, ¢Cl(D), for any g < y, there is a countable subcollection
{D;} of {Ds| B < y} and a sequence of points {p;} in S such that

(1) p;eD; for each 4,

(2) p; # p; and D; # D; for ¢ #j, and

(3) the point set {p;} has a limit point p, in 8.

For each 4, p;eh;, for some h;e H;. Let {h;} denote such a subcollec-
tion of H and, for each ¢, let q; eh;NX;. Since (by construction) no element
of H belongs to both H; and H;, ¢ # j, {d} is an infinite collection of
distinct elements of H; p; and g; ¢h; for each ¢, and {p,} has a limit point
P, in 8, while {g;} does not. We extend these infinite collections to un-
countable collections to obtain a contradiction. For each X, ¢X —{X,},
let h,eH, and let ¢,eh,NnX,. Then H= {h}v{h,} is an wuncountable
subcollection of distinct elements of H, but the point sets P = {p;} U{q.}
and @ = {q;}U{q,} contradict the fact that H is an N-ppc refinement.
Hence, D, can be constructed for each X,eX, and 8 is collectionwise
normal.

CoROLLARY 3. If a normal g-space is ppe, it 18 collectionwise normal.

Example I. A countably compact, first countable, normal g¢-space
which is ppe, X-ppe and collectionwise normal, but not paracompact.
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Let 8§ = {a | a < £,}, with the usual order topology. It is well known
that S is a countably compact (hence, ppc and N-ppe), first countable,
collectionwise normal g¢-space which is not paracompact (see [1]).

Example II. A first countable collectionwise normal g¢-space which
is neither ppc nor X-ppe.

Let 8, denote the space in Example I and let 8, = {¢ | ¢ < o}, with
the order topology (discrete except at w). Let § = §; X §,, with the product
topology at each point of the form (e, »), a < £2,, and with discrete topo-
logy elsewhere.

8 is clearly first countable. Let 8’ = {(a, ») | a < 2,}. Since the
subspace 8’ is simply §,, and since every closed subset of S — 8’ is both
open and closed, it is easily shown that S is collectionwise normal. We
now prove that 8 is neither ppc nor N-ppe. For each point of the form
(ayw), a< 2y, let O, ={(y,§))11<y<a,1<j<w}. Let 0={0,]
a < £,} and let H denote any open refinement of O. Clearly, no countable
subcollection of H covers §’, hence no countable subcollection of H cov-
ers 8. Therefore, there exists a well-ordered uncountable subcollection
H' of H such that if b, «H', there is a point (8,, ») eh, such that (8,, ) ¢k,
for any 8 < a. For each point (J,, w) thus defined, let ¢, denote the smallest
integer such that if j > 44, (d,,]) €h,. Since H' is uncountable, there is
an integer k and an uncountable subcollection H'' of H' such that if
h,eH', (84, w) and (d,, k+1)eh,. Consider the sets {(d,, w)|h,eH''}
and {(8,,k+1) | h,eH''}. The former is a subset of §’, and hence has
a limit point in §; the latter is a subset of 8 — S’ and has no limit point.
The desired conclusion follows.

The following space is a slight modification of an example by Bing [1],
Example G, and Michael [7], Example 2:

Example III. A normal, metacompact space which is ppc and
N-ppe, but not collectionwise normal.

Let P denote a point set of cardinality N, and let 7' denote the collec-
tion of all subsets of P. For each p P, let f,, denote the following function
defined on T:f,(t) =1 if p e?, and f,(¢) = 0 if p¢t. Let F, = {f, | p ¢ P}.
Let F' denote the collection of all functions f defined on T such that
f(@) =0 or 1 for only finitely many ¢¢7, and f({) =2 otherwise. Let
F = FpUF', and let S denote the space whose points are the elements
of F. Let the topology of 8 be defined as follows:

(1) if feF', let f be a degenerate open set;

(2) if f, e¥,, and r is a finite subcollection of T, say r = {t;, tay ..., tn}y
let 7, = {f|fe8 and f(¥;) = fp(k), 1 <i< n} denote an r-neighborhood
of fp.

The proof that 8 is normal but not collectionwise normal is the same
as Bing’s [1]. The proof that § is metacompact is the same as Michael’s [7].
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We now prove that 8 is ppe. Since any open cover of S can be refined
by a cover having at most N; non-degenerate open sets, it is sufficient
to prove that no subset of 8 having cardinality less than or equal to N,
has a limit point. Assume there is a subset {f, | aeA} of § having cardi-
nality less than or equal to N, such that {f,} has a limit point, say f,.
(We can assume that {f,} = F', since Fp has no limit point in 8.) For
each aed, let T, = {t;|1 <¢ < n,} denote the elements of 7' such that
fa(t) = 0 or 1. Since each T, is a finite collection, the cardinality of (T,
< N,, but the cardinality of 7 is 2"1. Hence there is an element #,in T — T,
such that f,(%,) = 2 for each aeA. It follows that the r-neighborhood
{to} of f, contains no point of {f,}, contradicting our assumption. Thus 8
is ppc and N-ppe.

3. Regular and metacompact regular ¢-spaces. In a regular ¢-space,
paracompactness implies ppc, N-ppc and collectionwise normality (Lemma 1
and Theorem 1). None of the converse implications hold (Example I).
Moreover, ppe implies X-ppe, but not conversely (Theorem 2 and Exam-
ple IV). Neither implies collectionwise normality (nor even normality)
(Example V). Collectionwise normality does not imply any of the other
properties (Examples I and II).

In a metacompact regular g¢-space, paracompactness, ppec, N-ppe
and collectionwise normality are equivalent (Theorem 6). Example III
shows that Theorem 6 cannot be extended to metacompact regular Haus-
dorff spaces.

Example IV. A regular locally countably compact g¢-space which
is N-ppe, but not ppe.

Let 8, = {a|a< 2,}, with the usual order topology. Let S, be
defined as in Example IT and let 8 = (S; X §;) —(£,, ), with the product
topology. Clearly, 8 is a regular locally countably compact g¢-space and,
since every uncountable subset of § has a limit point, 8 is X-ppc. We now
prove that S is not ppe. Let C = {(£,, %) | ¢ < w} and, for each ¢, let O
denote an open set containing (£2,, ¢), but no other point of C. {O;}u
U(8—0C) is an open cover of 8. Let H denote any open refinement of
this cover and, for each ¢, let h; denote an element of H containing (£2,, 7).
For each ¢, there is an ordinal a; such that if 8 > a;, (8, ¢) eh;. Since {a;}
is countable, there is a 6 < 2, such that é > a; for every i. It follows
that, for each 4, (8, ¢) and (£,, 9)eh;, and {(J, ¢)} has a limit point (4, w)
in 8, while {(£,,¢)} does not.

Example V. A regular countably compact g¢-space which is ppe
and N-ppe, but not normal.

Let 8; be defined as in Example IV. Let S, = §,— Q,, and let
8 = 8, X% 8,, with the product topology. § is countably compact (hence,
ppe and N-ppe), but not normal (see [4], p. 131).
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THEOREM 6. In a metacompact regular q-space S, the following state-
ments are equivalent:

(1) 8 is paracompact.

(2) S vs collectionwise normal.
(3) 8 48 ppc.

(4) S is N-ppe.

Proof. (1) is equivalent to (2), by Lemmas 1 and 3. (1)—(3)—
—(4), by Theorems 1 and 2. To complete the proof, we show that (4)
implies (1).

If S is a Lindelof space, 8 is paracompact. If not, there is an open
cover G of 8 such that no countable subcollection of G covers §. It is
sufficient to show that such a cover has a locally finite refinement. Let H
denote an N-ppc refinement of @, and let K denote a point-finite open
refinement of H. Let H be well ordered and let D, denote the collection
to which an element ¥ of K belongs if and only if A, is the first element
of H such that k¥ = h,. Let O denote the collection to which an element O,
belongs if and only if O, = D}, D} = @. O is a point-finite collection of
open sets refining G and covering S. Moreover, if O, and 0,¢0, a # §,
there exist elements h, and hse H, h, # hg, such that O, = h, and O; < hy.
Hence O is also an NX-ppc refinement of G. Let O’ denote a minimal sub-
collection of O covering 8 (see [2], p. 160). We now prove that O’ is locally
finite.

Assume O’ is not locally finite at some point p €8. Since § is a ¢-space,
there is a countable subcollection {0O;} of O’ and a sequence of points
{p;} in S such that

(1) p;€0; for each ¢,

(2) p; # p; and O; # O; for 4 # j, and

(3) the point set {p;} has a limit point p’ in S.

Let {O;|BeB} denote an uncountable subcollection of O'—{0}.
Since 0’ is minimal, for each integer ¢ and each 8 B, let ¢;¢0;— (0" —{0.})*
and gz €0;— (0" —{04})*. Clearly, {g;} {gs} has no limit point in S. Hence,
the subcollections {0;}U{0O,;} and the point sets P = {p,}U{g;} and @
= {¢;} U{gs} contradict the fact that O’ is an N-ppc refinement. Thus O’
is locally finite and 8 is paracompact.

4. g-spaces and metacompact g-spaces. In a g-space, paracompactness
implies each of the other properties (Lemma 1 and Theorem 1), and pp¢
implies N-ppe (Theorem 2). No other implications hold (Examples I, II,
IV and V).

In a metacompact g-space, paracompactness, ppc and collectionwise
normality are equivalent (Theorem 7). Each implies N-ppe, but not con-
versely (Theorem 1 and Example VI).
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THEOREM 7. In a metacompact q-space 8, the following statements are
equivalent:

(1) S ¢s paracompact.

(2) 8 is collectionwise mormal.

(3) S is ppc.

Proof. (1) is equivalent to (2), by Lemmas 1 and 3. (1) — (3), by
Lemma 1. We now prove that (3) — (1).

Let G denote an open cover of 8. Using the same construction employ-
ed in Theorem 6, we obtain an open refinement O’ of G which is point-
finite, ppe, and minimal with respect to covering 8. Continuing the con-
struction in Theorem 6, we obtain countable point sets {p;} and {¢;} such
that {p;} has a limit point p’ in 8§, while {¢,;} does not.

Example VI. A metacompact, first countable, locally countably
compact, Lindeléf ¢-space which is X-ppe, but not regular.

Let M = {1/i};2, and let S = [0,1]U([0,1] X M), with the relative
plane topology except at (0, 0). Let O be an open set in 8 containing
(0, 0) if and only if there is an open set O’ in the plane such that O =
(0’ N[0, 1)) U(0' N[(0, 1] x M]). It is easily shown that S is a metacompact,
first countable, locally countably compact, Lindelof g-space. Since every
uncountable subset of § has a limit point, § is X-ppc. 8 is not regular
with respect to (0,0) and N = {(0, 1/¢)};52,.

5. Lindelof ¢-spaces. Since a regular Lindelof space is paracompact,
collectionwise normality is equivalent to paracompactness in Lindelof
g-spaces. Preparacompactness is also equivalent to paracompactness (Theo-
rem 8), but an N-ppc Lindelof ¢g-space need not be regular (Example VI).

THEOREM 8. If a Lindelof g-space is ppc, it i8 paracompact.

Proof. We will prove that 8 is regular, and hence paracompact.
Let peS and let K denote a closed set in § not containing p. For each
point keK, let O, denote an open set containing % such that p¢Cl(0,).
Since {0, | k ¢ K} (8 — K) is an open cover of §, it has a ppc refinement H.
If some finite subcollection H' of H covers K, D — H'* is the desired
open set containing K. If not, let {A;} denote a countably infinite subcollec-
tion of H covering K such that, for each 4, h; contains a point ¢;, g;¢hy,
for j < 4. Since {h;} covers K, K is closed, and no element of {k,} contains
infinitely many points of {q,}, {¢;} has no limit point in 8.

Assume p ¢Cl({k;}*). Then p ¢Cl({h;}*) — {Cl(k,)}"*. Since 8 is a g-space,
there is a countably infinite subcollection {h;} of {k;} and a sequence of
points {p;} in 8 such that

(1) pyeh; for each ¢,
(2) p; # p; and h; # h; for ¢ # j, and
(3) the point set {p;} has a limit point p’ in §.
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For each 4, let ¢; denote the point of {¢;} belonging to h;. Then {¢}

and {p;} contradict the fact that H is a ppc refinement.

QUESTION. Is every regular, first countable, ppe (N-ppc) space normal ?

(If so0, it is also collectionwise normal.) (P 831)

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]

(10]
(11]
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