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Since then analytic series of representations of free groups have
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Figa-Talamanca and Picardello [FT-Pi] and Mantero and Zappa [Ma-Za],
which yield information also on nonunitarizable representations.

The methods of this note are discussed further by Bozejko in [Bol] and
[Bo2] and are closely related to those used in the author’s joint paper with
Cowling [Co-Fe].
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1. Introduction. Let G be a locally compact group, A(G) = A4,(G) its Fourier
algebra, B(G) its Fourier-Stieltjes algebra, as defined by Eymard [Eym], and
B, (G) its generalized Fourier—Stieltjes algebra in the sense of Herz [Her].

We recall that if (n, H,) is a uniformly bounded strongly continuous
representation of G on a Hilbert space, then any matrix coefficient ¢ of =, i.e.,

= (n(-) &, n) for some &, ne H,, is an element of B,(G). If G is amenable, then
furthermore B,(G) coincides with B(G).

On the other hand, the free group on two generators F, is not amenable
and the characteristic function of an infinite set E — F, which satisfies
Leinert’s condition:

(*) VneN, Vx,, ..., x5,€E, if x; #x;4+1, i=1,...,2n—1, then
' -1 -1 -1 '
X1 X3X3 Xg...Xap—1X2y F €,

is an example of a function which belongs to B,(F,) but not to B(F,) (cf.
[Le2], Korollar 12). This condition is weaker than requiring E to be a free set
by which we mean the following: :
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VneN, Vx,,..., x,€E, Ve ,...,e,e{—1,1}, if x;# x;4, Or & =¢&+4,
i=1,...,n—1, then
xPxP...xin # e.
We refer the reader to the paper of Akemann and Ostrand [Ak-Os] for
a discussion of the relation between free sets and sets satisfying Leinert’s
condition (*).
As indicated in the title we shall consider only a fixed discrete group G. We

show, using a theorem of M. Leinert on the decomposition of certain matrices,
the following theorem:

1.1. THEOREM. Let E < G be a set satisfying Leinert’s condition (). Then its
characteristic function is a matrix coefficient of a uniformly bounded Hilbert
space representation of G.

From the above discussion it is clear that this representation is not
unitarizable if the set E is infinite.

Now we introduce some notation.

Let K(V) denote the space of all finitely supported complex-valued
functions on a set V.

If FcV, let

Ip: I*(F)—>I*(V) be the natural inclusion,

Jp: I®(V)—>1°(F) be its transposed operator, and

Pp: I1(V)—I'(F) be the projection defined by

Pg: %f(y)ey-* pr(y)e,-

Finally, for 1 < p < o0 we denote by g the right regular representation of
G on IP(G):

e f(x) =f(xs), s, x€G, felP(G).

2. Decompositions of certain matrices. Let E < G be a set satisfying
Leinert’s condition (*) and let y denote its characteristic function. For a finite
set F < G the operator

AQ: foxxf,  felP(G),

induces an operator

Hg: IN(F) 25 11(G) 22, 12(G) 215 1= (F),

where the matrix of H, has the entries

he(, X) = (Hyey, ) = x0x7Y),  x, yeF.
The proofs of Korollar 12 and Satz 9 of [Le2] show that h; has an additive
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decomposition hp = qp+rp, where gp is a row matrix and rp is a column
matrix, i.e.,, for any ze F there exists at most one z'e F such that

ql-‘(zl9 Z) = <QFez’ ez’) # 0, rF(z9 Z') = <RFez’s ez> #0.

Further we may supposé that the nonzero entries of g, and r; are disjoint and
equal to one.

Remarks. (i) Qr has norm at most one when considered as an operator
from I*(F) to I*(F), and ||R;|| <1 as an operator from I*(F) to [*(F).

(i) Let H(F) be the [*-direct sum I*(F)®,/*(F) and let
Ap: N(F)-» H(F), Cg: H(F)—I*(F)
be defined by
Ap(f) = Qef. 1), fel'(F),  Cglg, f) = g+Re(f), (9, f)e H(F).
Then, clearly, Hy = CroAp and ||Ag| < ﬁ, ICell < \/i
(ili) We note that |Agflluw = IfIl,, feP(F).

3. Further implications of the decompositions. Throughout this section let
F < G be finite, se G, and fix a finite set F° < G with F° > Fu Fs. Let d be an
abstract symbol. Since in any row of rg, respectively of rzo, there is at most one
nonzero entry, there exist functions

"F->Fu{d} and ":F->Ful{d}
such that, for zeF,
rec(ys,zs)=1 if and only if 2z =y €eF,
re(y,z)=1 if and only if z=y"€eF.

Since the operator A(y) commutes with translations from the right the following
holds true:

3.1. LemMA. (i)-For fel'(F) define f(d)=0. Then for yeF
KQFf’ ey>| < I<QF°Q(s—l)f’ eys)l + |f(y’) —f(y”)l'

(i) For any zeF each of the sets
n,={xeF|x=z,x"#z}, m,={xeF|x"=zx #1z}

contains at most one element.

Proof. (i We have only to note that
Qrfs e>+f(V") = (Qsf, ¢,> +<{Rpf e,)
= (Hef, e,) = <e() A es™ NS, e,)
= (Hpoo(s™")f, o(s™Ve,>
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= {Qro0(s7")f, €,) +{Rpo(s™1)f, &ys)
= (Qroe(s™N)f, ey +f(¥).
(ii) Suppose x, yeF, x #y, X' =z, y' =z Then
rpo(xs, zs) = reo(ys, zs) = 1,
sO
hpo(xs, zs) = he(x, z) = 1,  hpo(ys, zs) = hge(y, 2) = 1.

Since qp is a row matrix, we must have qg(x, z) =0 or gz(y, z) = 0. Thus
re(x, z) = 1 or re(y, z) = 1, which implies x” = z or y” = z. So either x¢n, or

yén,.
The other statement is proved similarly.

3.2. CorROLLARY. Let fe K(G), s€G, and let F o supp(f). Then for any
finite set F° > F UFs

Qe I3 +1112 < 9(IQree(s™ S I3+ le(s™ NS 13)-

Proof. From (ii) of Lemma 3.1 we obtain

Y &P <Y #nlf@F <IfI3

x:F zeF
xl xll
Y RS Y #mlf@P <13,
’x;:F” zeF
x'#x

where # denotes the cardinality of a set.
On the other hand, an application of (i) then yields

12x£113 < X (IKQroe(s™)f, exdl +1/(x)—f(x")I)?

xeF

< X (2KQroa(s ™Y f, exd? +21f(x) —f (x")?)

xeF
=2) KQroo(s™)f, ex)I? +2 ZF |fx)—=f (x")I>
xeF xeF’
<2 ZFOKonQ(S")f, e +2 Z; 1) +2] f(x")?)
<8 XF’,OKonQ(S")ﬂ edI*+1113],

where F' = {xeF | x’ # x"}.
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4. Construction of the representation. Let X be the system of finite subsets
of G ordered by inclusion, let 2 denote an ultrafilter on X containing the filter

® = {Vpo| Vpo = {FeX | F > F°}, F°e X}

generated by the ordering of X.
With respect to Q we define a sesquilinear form (-, *), on K(G) as

(fs 9)g = im(Ap P f, ApPr@)ur).
0

Since @ < Q and since || f||, < ||[AgPsf |uwr) for all fe K(G) whenever F is
sufficiently large, i.c., F contains the support of fe K(G), the form (-, ‘), is
positive definite on K(G). So K(G) with the norm |||, corresponding to (-, ‘),
is a pre-Hilbert space and

Ifllg =lim [|AzPefll, feK(G).
Q

We are going to show that right translations act uniformly boundedly with
respect to this norm.

4.1. LeMMA. Let fe K(G), seG. If a and b are accumulation points of the
nets

{"AFPFQ(S)f"H(F)}FeX and {"Appr”H(F)}Fex,
respectively, then a < 3b.
Proof. Let ¢ > 0. Then there exists F° o supp(e(s)f) such that
la— | Ape Pro@(8)f llaro)l < &/2.

Since b is an accumulation point of the net {|| Az Pgf |z} rex, there exists an
F' o F° U F°s such that

|b— A P f | aerry < /6.
By Corollary 3.2 we have
"AF°PF°Q(s)f"H(F°) 3| AF Q(S_I)PF°Q(s)f"H(F) 3| Ap P f||H(F),
and so
< |Ape Pro@(s) f llaroy+€/2 < 3| Ap Pr f gy +6/2 < 3b+e.
Since ¢ > 0 was arbitrary, we obtain a < 3b.
Clearly, for any bounded net {ap}r.y of real numbers, lima, is an

Q
accumulation point of the net. Hence the lemma gives

le@)flle<31flle. feK(G), s€C.
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Therefore ¢ extends to a uniformly bounded representation @' of G on the
completion H of K(G) with respect to |||,. It remains to show that the
characteristic function y of E appears as a matrix coefficient of ¢'. To this end
we define a linear functional ' on K(G) by

n'(f) =1lim{CrAgPef, Pge,).
Q

Then [n'(f)| < ﬁll fllg, and so there exists some ne H with
()= [eK(G), IInll </2.

Furthermore, if seG, s~ !, ee F, then

x(s) = CA(x) es-1, e.> = {CpApPro(s)e,, Pre,).
Since @ < Q, this yields x(s) = (¢'(s)e., n)o-
4.2. COROLLARY. Let E = G be a free set and bel®(E). Then there exist
a uniformly bounded Hilbert space representation (n, H) and &, ne H such that
b(x), xeE,
0, x¢E.

Proof. For xe E we define a unitary operator on /2(Z) by displaying its
matrix

(w16 = |

where

(A)=(a“" “—1,1):( 1—|b(x)? —b(x) )

do0  Go, b(x) J1—|b(x)?
(cf. [Fo-Na], Chapter I, Section 5).

Since E is a free set, we may define a unitary representation of the
subgroup (E) generated by E by sending x € E to the above-defined operator.
The representation of G induced by this representation of (E) has a matrix
coefficient which is equal to b on E.
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From our theorem we infer that the characteristic function of E is a matrix
coefficient of a uniformly bounded representation of G. The function which is
equal to b on E and zero elsewhere is then a matrix coefficient of the tensor
product of these two representations of G.
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