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1. Introduction and statement of results. Suppose that

(11) f) = D) an

v=0

is mean p-valent (1) in |2| <1 and that
(12) Ny 1—mn, = O’ v 2 Yoy

where C is an integer greater than one. (The case ¢ =1 is classical). Our
aim is to investigate the effect of the gaps (1.1) and (1.2) on the growth
of f(z) and on its coefficients a,. We shall prove the following

TuroreM 1. Suppose that f(z), given by (1.1), is mean p-valent in
2l <1 and that (1.2) holds. Then

(1.3) Mr,f) < Ay(p, 0, v)up(1—1)" 21 0 <p <1,
and hence we have for n > 1 |
(L.4) ] < As(p5 O, ) ™, € < 4p,
(1.5) @] < A4(p, C, v) pyn~Plogn, C=4p.

If C > 4p,
(1.6) @] < Ay(p, O, vo) ppn 2,
and
(1.7) la,) =o(n ')  as  n - oco.

Here

tp = Offjp’““[’ M(r,f) = Ilglfif If (=),

() In this paper mean p-valent denotes a really mean p-valent in the sense
of [3].
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and A;(p,C,») denotes a particular constant depending on p, C, v,
only. In addition A(a,f,y,...) will denote as usual constants depend-
ing on (a, 8, v, ...) only, not necessarily the same each time. Theorem 1
is classical if n, = Ov+B, where B is a constant (see e.g. [3], Chapters

IT and 1II).
Inequalities (1.3), (1.4), (1.6) and (1.7) all give the correct orders
of magnitude. In fact, if € is any positive integer and p > 0, the functions

fl2) = Q=)0 = B age®

satisfy (1.1) with n, = C», and are p-valent in |¢| <1 if p/C is an in-
teger and mean p-valent otherwise. Also
M(r, f) = Q=)0

and
nzp/(:‘- 1

™ T(2p|0)

n — oo,

so that the orders of magnitude in (1.3) and (1.4) cannot be sharpened.
The deductions (1.6) and (1.7) from (1.3) hold for any mean p-valent
function and are due to Pommerenke [6]. These inequalities are also
sharp. In fact, if {a,} is any sequence of positive numbers for » > 1,
such that '

(1.8) Zangl, Znaf,gl,
1 1
then
(1.9) f(2) = a+ D an"
1

is mean p-valent in || < 1, provided that a, > 1+4+p~*% [6]. For a fixed
m we may choose a, = n~'*, n = m, a, = 0 otherwise, so that (1.6) can-
not be sharpened. Also given any sequence &,, such that

e, —>0 as nm—> oo,

we can clearly find a sequence n, of positive integers satisfying (1.2)

and such that
tn, < 1y e,iv <1.
by by

We then set a, = 2+p—112’

1/2
an:en/n/, n="mn, @, =0, nF~En, =1,



MEAN p-VALENT FUNCTIONS 3

and note that (1.8) holds so that f(z) given by (1.9) is mean p-valent.

Since e, may tend to zero as slowly as we please, the order of magnitude

in (1.7) cannot be sharpened. It is not known whether (1.5) is sharp.
If p is an integer, the functions

f(2) = 2(1—2°)~*I¢

are p-valent, i.e. assume no value more than p times and show that
even in this case (1.3) and (1.4) cannot be sharpened. It is not known
whether (1.6) and (1.7) remain sharp for p-valent functions. However,
some examples of Littlewood [5], show that, if p = 1 and f(z) is uni-
valent, (1.4) does not in general remain true if ¢ is large even for the
sequence 7, = Ov+1. Tn the second half of the paper we investigate
those functions which have maximal growth subject to the hypotheses
of Theorem 1.

2. Proof of Theorem 1. Inequalities (1.4) to (1.7) are immediate
consequences of (1.3) for mean p-valent functions by theorems of Spen-
cer ([8] see also [3]) and Pommerenke [6]. It is thus only necessary to
prove (1.3). We shall see that (1.3) also follows fairly simply from known
results. Among these the following Theorem of Ingham ([4], Theorem 1)
plays a fundamental role.

LEMMA 1. Suppose that g¢(0), defined in [0, 2=], has a wuniformly
convergent Fourier expansion

g(6) = anyei”ﬁ,

where n, ,—n, = C =1. Then given ¢ > 0,0 < 6, < 27, we have

o PiHa W(Jz’rs
[ lgOras <cae) [ jg0)2a0.
0 6;
We now write
vo—1 00
(2.1) - Pla) = 2 W,y g(2) = ) an 2™,

so that f(z) = P(2)+g(z) in (1.1).
We have by Lemma 1, for 0<i<1, 06, <2r,e>0 and
0y > 0,4-2(n+e)/C

0

22) [ 10 we ka0 < 0ate) [ 1g t)pas.

0y
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We write
r o Oy .
S(r, 01y 02,9) = [ [ 1y (te")"tdtd,
0 0

S(’r1 g) = S(T) 09 2717, g),
¢
and deduce that for 0,=> 0,2 (—r)
(2.3) S(r, g) < CA(e)S(r, 01, 05, 9).

We have next

LEMMA 2. Suppose that f(z) is reqular in |z| < 1, that a and K are
positive constants and that

(2.4) My, ) < KQ1—r)™" M@y f) = K1d—ry)",

where 0 < r, <r, <1. Then there exists r such that vy <r <7, and
(2.5) Mr,f) =K1—r)"",

(2.6) S0 f) = T arM(r, )2 = - a KAL),

where r' = 1(1-+7).
We write M (r) = M(r, f) and denote by M’ (r) the right derivative
of M (r). Suppose that

(2.7)

(l—t)’ 7 b Ty

Then we have by integration

y [
log M (r,) —log M (r) < alog ( T : ),
=12

so that
(2.8) A—r)*M(r) = (Q1—ry) " M(r,) = K.

This contradicts (2.3) if r =, and so (2.7) is cerftainly false for
Freoh, 18
M (r,) S a
M (r,) (1—7,)

?

we set r = r,. If not, we set » equal to the lower bound of all numbers
such that (2.7) holds. It then follows that r, << » <7, and further that

(2.9)
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In fact, M(r) can have isolated jump increases, but by our defini-
tion M’(g) is continuous on the right. If (2.9) were false, we could replace
r by a slightly smaller number. Also in view of (2.8) we have (2. 5).

We proceed to prove (2.6). It follows from a known result (see e. g. [2])
that there always exists a point z, = 7’3”’, such that

] — f W)
ff(zo)l = M(Tyf)) %o f(%) =1 M(?‘) .

Hence
\f' (z0)| = M'(r).

Now if »" = }(1-+r) it follows that

SN = [ If @Rdedy = w0 —r)2)f ()2

|2—2&g|l<<r’'—7

since [f'(z)|* is subharmonic. This gives, in view of (2.8) and (2.9),
(T’af) _(1_ M (r)? 2—03]” 7y f)? —a K*(1— r)~*,

which is (2.6). This completes the proof of Lemma 2.
We next need a lemma due to Pommerenke [7].

LemMmaA 3. If
= Zanz"
1

is mean p-valent in |2| < 1, and 6 > 0, then there exists a positive integer k,
and numbers C,, Cy, C,, ..., O} possibly depending on n but bounded abm)e
by constants dependfmg on p, o only such that

k
a,+ ZCtan_tI Z Pyl

=1

(2.10)

We deduce
LemMMA 4. With the hypotheses of Theorem 1, and given 6 > 0, we
have

lan| < A(p, 9, V0)77'—1/2+54”29, "< N,

Since a,, = 0, except when n — n,, it is sufficient to consider n = n,
with » < »,. We prove our result by induction on »,. Suppose that it 1s
proved for », < m. We proceed to prove it for Yo = m. We set

N == Nyy = Ny
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and use Lemma 3 with » = N. The terms a,_; which appear in (2.10)
and are different from zero are of the form a,, , with » <<m, and so Lemma 3
applies to these. We deduce

i
[tnl < APy ) pyn 0 Dy A (py 8, m—ty ) (n—t) M
i=1
= ﬂpA (p, d,7) i

This proves Lemma 4.
We have next

LEMMA 5. If f(2) satisfies the hypotheses of Theorem 1 and P(z) is
given by (2.1), then given a > 0, we have

S(r, P) <A1(p,a,vo),u§,(1—7‘)—2“, 0<r<1.
We have by Lemma 4

I'O 00
S(T7 ‘P) = "Ik 2”11]“7%‘27.2”” < A(p, a, vO)M%_Zlﬂfarznv

=1

< A(p, a,v)py sup {n*r™},

n=1to oo

Also
(n _{_1)207,2(?’0,-}- 1)
n2a7,2n

1 2a
- (1+—) rt <1,
n

if » < (1+1/n)"%n> (r~"*—1)"'. Thus
supn?®r® L [(r~ Y —1)"' 417 < A(a) (1 —r)"%.

This proves Lemma 5.
We can now prove

LEMMA 6. Suppose that f(z) satisfies the hypotheses of Theorem 1
and that (2.4) holds with a = 2p|C and some constant

(2']—1') K > Ay(vg, p, Cy &) py-

Letr, r" satisfy the conclusions of Lemma 2. Then if ¢ > 0,0 < 0, < 2,
there exists & = o€, with 0 <o <#', 0, <0 < 0,+2(x+e)/C, such that

K P 1/2 .
(2.12) If(2)] > T[C”—ALS—)] (L—r)"%,

where A(g) is the constant of (2.3).
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We have by (2.5) and (2.6)

(r'y f) = K2 o (L—r)~*,

while by Lemma 5 with a = 2p/C we have
(2.13) S’y P) < A b (1—r)%,

where A, depends on »,, p, C only. We have for any two functions ¢,
and g,

S(ry grtee) = [ [ lgutoul dedy = 8(r,9.)+80r,0) —2[8(r, ¢1) 8(r, ¢2) ]

l2l<r

by Schwarz’s inequality. Thus setting ¢, =f, ¢, = —P, we have

S0, 9) > S0 DS, P)—2 180, 807, BT > L 80, )
provided that
1
S0, P) < 1= 80", 1),

and this is true provided that
L 2
(2.14) TK a =164, u;,

which we assume. We now apply (2.3) and deduce that we have, with
6, = 0,+2(n+¢)/C,

, s S’y f) rd’ K*

8(r'y 01, 05, 9) > (4(e)C)'8(r, 9) > >

404 () = 16CA(e)(1—r)*

Suppose now that K is so large that
o K?
2.15 — .~ 164.4.
ale) 1604 (e) =

Then we deduce from Lemma 5 that
J ! ’ 1 ?
S(r’y 04, 05, P) < 8(r', P) < ES(T y 015 04, 9).

Since f = P-g¢, this gives just as before that
nal K*
6404 (e)(1—r)*

1
S(r'y 01y 05, f) = 1 S(+'y 01, 05y 9) =
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Let M = sup|f(z)| in the sector E of values 2z = te” for which
6, < 0 <0,, 0<t<r'. Since f(2) is mean p-valent in E, the area of the
image of this set by f(z) is at most =pM? so that

ralK*

~M*>=8(r, 0,,0 S
P (7'3 1) 21f) 6404‘1(8)(1—?‘)2"

Thus we can find z = t¢® in E such that

ok oK P )”2 —a
=M>—— 1— Sl N B

This proves Lemma 6 provided that K satisfies (2.14) and (2.15),
1.e. provided that

K > A(vg, p, C, &) pp,
as required.

3. Lemma 6 tells us that there exist at least ¢ points 2 in 2| <7’
no two of which are too close together such that (2.12) holds. This leads
to a contradiction if K is too large. We have more precisely

LeMMA 7. Wilh the hypotheses of Lemma 6, we can find points
4 =0y, v=0 to C—1, such that

1—47%¢/(n0) < 9, <r and |0,—6, > %m0d2n, 0 < pu<v<<C-—1,
where ¢ = = [[2(C—1)], and
(3.1) f(z)] > KA(p, O)(1—r")"".
We choose z, = r'¢%, such that
fz)l = M, f) = M(r,f) > K(1—r)"" =27 "K(1—r)""

by (2.5). We then find # = r,6"™, v =1 to C—1, satisfying inequality
(2.12) in each of the ranges

i R B e e e et
0—1 ¢S c—1 ¢
where
T
*T 90—y

The length of the interval in which 6, is allowed to lie is

2n 28_2 1 1 _ o [1 1 ]_2(ﬁ+8)
-1 @ “[0—1_20(0—1)]_ T E+20(0—1) o
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so that Lemma 6 is applicable. Also if we define 6y = 0,+2r, we have
2
6, > 9,_1+—05, y =1 to C,

which is the required inequality for the points 6,. Also since a = 2p/C
and ¢ = n/[2(C—1)], (2.12) becomes

1f (2] >A—(6)_(1_T)_a = W 1

which gives (3.1).
By (2.12) we have |z,| < r'. To make |z,| > 1—4"P¢/nC it is sufficient
to choose K so big that

47 P

Since f(z) is mean p-valent in |2| < 1

e
M(I_Torf) < A(p, O)ﬂﬁa_zp = A(p, O)up,

so that we can achieve this by increasing if necessary the constant on
the right-hand side of (2.11).
We quote one final result ([3], Theorem 2.6):

LEmMA 8. Suppose that f(z) is mean p-valent in the wunion of the
disjoint disks |z—z,| <r,,v = 110 C, and that f(2) # 0 in |z2—z.| < 1r,.
Suppose also that

f(@) <Ry, |f(2)] > R,,
where 8, = (r,— |¢,—2,|)[r, > 0, R, > eR,. Then

C
AP\ 2p
2 [I‘)g( 5, )] S Tog(ByfRy)—1 °

v=1

We can now complete our proof (2). Since f(2) is mean p-valent in
|2| <1, f(2) has ¢ < p zeros there. Hence f(z) # 0 in at least one of the
annuli

4-t2¢ 4= Do,

1-— 1—
<l < 0

t=0 to gq.
We choose such an annulus, set

=1dt 1y
0 C 0

T

() The argument is almost identical with that for [3], Theorem 3.7.
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and note that f(2) has no zeros in the annulus 1—2r, < |z| < 1—4r,.
We set 2, = ¢, 2, = p,6™, 7, =7, in Lemma 8, and note that by
hypothesis

0 =1— L = 0.
vy = ‘TEC =g
Also if u #,
’ ’ . 6”'—6,, 46 28
IZ#—.ZvI 229 sSin ( 5 ) = Q;‘a‘? ::E-> 21'0.

Thus the disks |#—=z,| < 7, lie in |2] < 1 and are disjoint and so we
can apply Lemma 8. Finally
h—(e—0) 1—0¢ 11"

=
"o To Ty

0, =
We set
Ry = M(e,f) < A(p)pp(1—0)7" < A(p) upy O
by a classical result of Spencer (see e.g. [3], Theorem 2.5). We also put

R, = inf [f(a)] = KA(p,C)(1—r")C,

v=0to C—1

We have by Lemma 8

o]
| | AP 2p
th 1 E 1 - ’
either R, < eR, or £ [og 5, ] - log (Ry[Ry)—1
i.e.
.R2 2p A(p)’ro
log|==| <1 1
Og(R1)< -+ C 0g (1_7,:) !
A(p)r
R, < GRI[(l_T,;]2p/O’
and hence

R, < A(p, O)Hp(l _'_,,.')—220/0"
Thus this inequality holds in any case. We deduce
KA(p, O)(l_y-’)—Z’PIU < A(p, C) pp(1 ¥T')_2p’cr

which gives K < A(p, C)up.
Thus (2.4) leads to a contradiction if (2.11) is satistied and K > A4 (p, 0).
Since for arbitrarily large K, we can always satisfy

M(ry, f) < K(1—r,)" %,
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e.g. with r;, = }, it follows that the contradiction must arise from
M(ry, f) = K(1—ry)"",
which must therefore be false for K > A(p, C, v,)u,. Thus
M(r,f) < A(p, O, w)pup(1—r)"2P¢) 0 <r <1,
as required and the proof of Theorem 1 is complete.

4. Suppose now that the hypotheses of Theorem 1 hold and set
B = lim (1—»)*C M (r, f).

r—1

If =0, it follows from classical arguments ([3], pp. 46 and 105)
that (1.4) can be sharpened to

la,| = o(n*®/° ") as n - oo,

if ¢ < 4p. We have no further conclusions in this case and confine our-
selves in what follows to the hypothesis

(1.1) B>0.

In this case we are able to apply a series of rather deep regularity
theorems recently obtained by Eke [1]. We start by proving that the
hypotheses of Eke’s Theorems hold. We have

LeMmA 9. Suppose that f(2) satisfies the hypotheses of Theorem 1
and in addition (4.1). Then there exists a sequence vy, with the following
properties:

O tpsly, K=1,24.:4y

r.—>1, a8 Fk— oo.
Further for each k there exist C points 2,5, v =0 to O —1, such that
|26l =71, v =010 C—1,
loe—2pl Z206>0, 0L u<r <01,
where 8 is a positive constant independent of w,v and k, and finally
Ifzl > 8 (1—rg)"™C, k=110 co,y =1t C,

where p' is a constant independent of v and k.
We note first that

By = lim (1—r)®%Y M (r, f') > 2pB)C.

r—1

For if this is false we have for [¢] =7 > 7,

()] < (Byte)(1—r)I0N
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Integrating along a radius this gives for r > r,
C
Mir, ) < Mo )+ (Bute) 5 - (=)~

which yields a contradiction if 5,C/(2p) < . Next we note that
(4.2) fo = lim (1—)"°8(r, ') > A(p, O) "

r—1

In fact, suppose that ¢ > 0 and let » be chosen so that 1—e < » < 1
and such that there exists z, with [z = and

lfl (20)] > (B1—e)(1 _7')_(2?)/04‘1).

Then if »" = }(1+r), we have as in the proof of Lemma 2

Sen = [ 1 @Pdrdy > T A —rPlf ()

[2—2pl<$(1-7) 4

— 270, —e) (1 ') IO,

® e\ (1 —p) IO
> (Bief (1) :

4

and since r’ can be chosen as near 1 as we please we deduce (4.2).
We now choose r as near 1 as we please such that

1
S(r,g) > Eﬁz(l—r)‘“/“,

where ¢(2) is derived from f(2) as in (2.1). This is possible since P(z) is
a polynomial, so that f’'(z)—g’(2) is bounded. It then follows from (2.3)
that

Af(e)

5 ba(l—1)",

S(r, 0y 05, 9) >

provided that 0, > 6,4-2(x-+¢)/C, and hence also that

S(r, 01, 0,5, 1) = %%l Ba(1 __7»)—41)/0

with the same hypotheses. Since f(z) is mean p-valent, it follows that
8(ry 0,y 0y, f) < 7p M2

where M is the maximum of [f(te"’)| for 0 <t < r, 0, < 0 < 0,. Hence
we can find te” such that

1/2
A—(£)ﬁ2) (1 _7_)—21)/0'.

0
oy > (528
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On the other hand, we have by hypothesis if » and so ¢ is sufficiently
near 1,

(4.3) f(te™)] < 2B(1—t)~PIC,
so that
(4.4) (1—t)>K@d—r),

where K is a positive constant depending on g, p, 0 and & only. Also
we may suppose that » and hence ¢t are so near 1 that all the zeros of
f(2), of which there are at most p, lie in |2| < 2{—1. Then

p(2) = [t +(1—1)2]

is mean p-valent and non zero in |2| < 1 and so we deduce that ([3],
P. 23) -
#(2)] > A(p)(1—[2)*|p(0)], |2] <1.

We apply this result with te”+4 (1—t)z = r¢, so that
ol = (r—0)/1—1), (1—12]) = (1-7)/1-1),
and in view of (4.3) and (4.4) we deduce that
(4.5) F(re”) > A(p, 0, &) p(1—1)"7,
for some 6 in each range 0, < 6 < 6,, provided that
6, > 0,4+2(n+e)/C,
and this is true for some r arbitrarily near 1. We choose again 6, so that
f(ré®)] = M (r, f)
and then choose a value 6 = 6, to satisfy (4.5) in each of the ranges

27 (v—1)
c—1

9
GTwl —%, y =1 to 0—1,

€ /

B+ e T < 0, < O+
where ¢ = n/[2(C—1)]. Then if z, :re’"";, vy =0 to C—1, we obtain
the conclusion of Lemma 9. We have only to let » tend to 1 through
a suitable sequence of values r; and write z, ; for the corresponding value
of 2,.

Using merely the hypothesis that f(z) is mean p-valent in 2| < 1,
and satisfies the conclusions of Lemma 9 Eke [1] deduces a remarkable
series of conclusions which we summarize as follows:

LemMa 10. If
f(@) = D and"
0
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is mean p-valent in 2| <1 and satisfies the conclusions of Lemma 9, then
there exist k rays arg z = 0,, where 0, << 0; < 0, <<... <0, = 0,+2%
with the following properties:

1/2
) log|f(re™)| = %ilog 1ir +0(10g1i¢) /, y=0 1t C—1,
as r —1,
(ii) Further if r, = r,(R) is so chosen that |f(r,e)| = R, then
o-1
Rczn( —,)P — B3
r=0

as R — oo, where 0 < B, < oo.
(iii) If we write

a,(n) = n~?ICf [(1— i) ei(’”]y
n

flre?) = [1+0(1)]a, (n) [1—re' =TI

then we have

as n — oo, uniformly provided that n(1—r) is bounded above and below
and n|0—0,| is bounded above. Also

f'(re”) 2p
fre®) ~ C[1—ré®%7’

while r -1 and [6—0,] = O(1—r).
(iv) If, for v =1 to O, |0—06, = 6 > 0, where & is a fixved positive
constant, then

" 1 1/2
log |f (re®®)| =
oef(re®)) = o log ]

uniformly as r — 1.
) If in addition 4p > C, then we have as n — oo

2p/C—1

_ j n o=ty 2p/C—1
Z F[Qp/O] rola(m) ™,
where
a(n) = sup aq,(n).
v=0to C—1

Thus the functions f(z) satisfying the hypotheses of Theorem 1
and in addition (4.1) satisfy all the conclusions of Lemma 10.
However, in this special situation we can prove a little more.
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THEOREM 2. Suppose that f(z) satisfies the hypotheses of Theorem 1
and in addition (4.1) holds. Then f(z) satisfies the conclusions of Lemma 10.
In addition we have with the notation of that Lemma

2
(Vi) 0, = O, —Z’i, y =0 to O—1,

(vil) We have, as r — 1,

) 2 1
log|f(ré'™)| = —L log

Llog———+0(1), »=01 01,

If further p > 4C we can strengthen this to
(vil') [f(re™)] = |f(re )|+ 0(1) ~ (L —1)""€, a5 r->1.
Also
(viil) There ewists an integer B such that, for all sufficiently large v,
n, = Cv+B in (1.1) and
C 320/0—1
0y | ~ PO
v I'(2pl0)

as Yy — ©O,

5. Proof of Theorem 2. We start by proving (vi). Suppose that the
result is false. Then there exists » such that 0 <v < ¢ and

| a0, 2
We define & such that
0 _p — 2n+be
v41 y = o

and set
, e

, £
9,, - Bv—l_Ey 0v+1 - 99—]—-1_6'

It then follows from Lemma 10 (iv) that

. 1 1/2
log f(ré")| = 0 {mg 14}

uniformly for 6, < 6 < 6,,;. This however contradicts (4.5). Thus we
have (vi).

We next prove (vii). Let 6, be a fixed number such that 6, < 6.
< 0,41,7» =0 to C—1, and Op = 6,+2x. Then if r, = 1—1/n, it follows
eagily from (iii) and (iv) that

(5.1) 87y 051, 6,, f1 = [14-0(1)]|a,(n)[* 8 [7,,, (1 —2)~2PIC],
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The method of Eke [1] also yields

(5.2) S0ra, f) = [1+o(1 {2 |2, () *} 8 [1, (1—2)" ],

If P(z) and ¢(2) are again defined as in (2.1), the analogous asymp-
totic relations hold for g(z) = f(2)—P(z2), since P(z) is a polynomial.
We now choose for a fixed 6,
3
20’
which is equivalent to choosing ¢ = =/2, when applying (2.3) with 6,_,, 6,
instead of 6,, 6,. We deduce from (2.3) that

S(Tnaf) < 'AOS(T’H’ 6:’:*1, Gi,f)
where A is an absolute constant, i.e. for each fixed » and n > n,

-1

Z la,(n)| < 240a,(n)[*,

=0

’ r 37:
01'_ = U= Bv = VpT T~

in view of (5.2). This yields, for each fixed »,

(5.3) la(n)] < V(240)|a,(n)].
We now use Lemma 10 (ii) and set
B = (ﬂa,nzpc’)uc?_
Then if the r, are defined as in Lemma 10 (ii) it follows that
1+o0(1) 140(1)

inf (1—r)————, sup (1—7,) =
y=0toC—1 n v=0t0C—1 n

It also follows from (iii) that |[f(re'™)| finally increases. for each fixed ».

Thus we deduce that
inf  |f(r.e'™)| <[1+0(1)]R

r=0toC—-1

sup  [f(rae'™)| = [14+0(1)]R

y=0to(C—-1
This is equivalent to
inf  |a,(n)] < [140(1)18,

r=0to(C-1

la(n)] > [1+0(1)]18Y%,

and in view of (5.3) we deduce that for large =
e e
B < g m)] < la()] <V(340)87".
V(340)
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Since for 1 —1/n <r < (1—1/(n+1)) we have
[f(re™)] ~ |f(r,e™)],

we deduce that for each »

/02
— = < lim (1 — )2/ f (re)| < Hm (1 —#)?/C| f(re'®)) < V(340) Y,
V(340) = r—1

This gives (vii).

We next suppose that p > 4¢ and prove (viii). We can in this case
make use of the asymptotic formula (v). By hypothesis #, —n, = C.
To show that n, = (v B finally it is enough to show that if n is large
and Lemma 10 (v) holds with 0, = 0,+2xv/C, then it is not possible for
the coefficients a,,, a, f1y 03 Oy o_; all to vanigh,

We note first that in view of (i)

a,,(’l’!—l—l) ~ a,.(’i’l/)

and by (vii) the |a,(n)| and a(n) are bounded above and below. Thus (V)
gives -
0-1

-9 (l,,(’n) —1 i)6.
(5.4) n'=*#q, . = [i__ g "B+) ] +o(1),
; I'(2p|0)

a8 n — oo for j =0 to C—1.

Suppose now that a,,; = 0 for J =0 to C—1, and some arbitrarily
large n. We multiply (5.4) by ¢/®+% for each Js 0 <j < O0—1 and add.
This gives

c-1 c-1

a,,( ) —i(n-+-7)(0,—
W%)[Ze =] — o(1).

Also in view of (vi)

C-1 —
N oo |0 =0,
=0 0, Yy = 1 tO C‘"‘l.

Thus we deduce that _
@ (n) = o(1),
for some arbitrarily large n, which contradicts (vii). This shows that
in (1.1) we must have n, +1— 1 < O and 80 n, ;—n, = C for all large »,

so that n, = Ov-+-B for large ».
It follows that

f@) =P@R)+ D a, 27,

V= Vl

Colloquium Mathematicum XVT. 2
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where P(z) is a polynomial. If we set o = exp(2xi/C), this gives

(5.5) flar) = P(w2)+ Y ay, o™ P,

v=Pl

— o®f(5)+0(1),

as |#2| — 1 in any manner.
Suppose now that the numbers 7,(R) are defined as in Lemma 10.

It follows from Theorem 2 (vii) that (1—7,)(1—r,) is bounded above
and below as R — oo. Hence in view of Lemma 10 (iii) and (5.5) we have

as R — oo
1_,,; 2p/C
- ( 1_7"0) ‘

Now Lemma 10 (ii) shows that for each fixed »

:‘ ’Lﬂ
l 0

1,60

e

R (=) — By,
i.e. . ,
F(r, %) ~ Bfe (L —r,) ¢
as 7, 1. This yields (vil’) with g = gy
It remains to complete the proof of (viii). We note that by (5.5)

a,(n) = o ag(n)+o(nt).

Thus Lemma 10(v) gives

B ) p2PIC—1 g~ indg o1 Bt
Gy = T'(2p/0) [,;: ) —{—0(1)].

If (B—mn) is a multiple of ¢ this gives

O |ay(n)| 0¥t pOR™Io!

in view of (vii’). This proves (viii) and ¢ompletes the proof of Theorem 2.

6. It is reasonable to ask to what extent the condition p > 4C is
essential for (vii’) and (viii). T am not able to answer this question as
far as (vii’) is concerned but (viii) is certainly false if p < 4C. We have
in fact

THEOREM 3. Suppose that g(z) = (1—2)"" and let b, be an arbilrary
sequence of complex mumbers such that

N <1, Yaplr<Z
1 1 ¢
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where 0 < p < C/4. Then the function

F(@) = [g(E) 444 b, a™

satisfies the hypotheses of Theorem 1 and
A=) (r,f) - C®C, a5 1,
However we can choose the b, so that

i-JE(Iﬂil-]-l_nv) = 0.

We suppose first that ¢ = 1, and p < b and set w = @ (2) = g(2)* 14,
Then w = g(2) maps |2] < 1 (1.1) conformally a subset of the halfplane
larg(w)| < /2, so that @ (z) maps |2/ <1 (1.1) conformally onto a subset
of the sector

|larg (w—4)| < p=

in the w plane. Let w = 41t be g point in this sector so that
|0] < pr < =/4. Thus

|w|? = 16 +8tcos 042 > (t--2)2.

Thus ¢ < [w]|—2, and the area A(R) of the part of our sector in the
disk |w| < R is zero if R < 2, and is at most pr(R—2)2 if R > 2.

Consider now a sequence b, satistying the hypotheses of Theorem 3
and set

S0 that in K(R) we have

16(2)] < [f(&)]+ lp(2)] < R+1.
Thus

< R—1) R>1
ff[G'(z)]zdwdy < A(R+1) pr( )2, :
B(R) — 0, R<L.

Also

(e o]

[ [0 @) 2dedy < [ [ 1’ ()|2dedy — = Y b2 < pr.

E(R) l2|<1 1
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Again if R > 1, we have
[[1f @N2dady < [[{lg'@IE+IE @P+21E ()¢’ ()]} dody,

E(R) E(R)
and
[[1@ @y @ldady < | [[ 16 E)dady] { [ [ 1" ()2 dwdy} ™
E(R) E(R) E(R)
< pn(R—1).

Thus if R > 1 we have finally
[[1f @)2dady < pr(1-+2(R—1)+(R—1)] = prk*.

E(R)

This inequality remains valid for R <1, since in this case H(R)
is void. In fact, we have for |z] <1

If ()] = |G(2)|— lp(e)| = 4—1 = 3.

Thus f(z) is mean p-valent for [z] < 1.
We have

G(2) = (1—2)P+4 = D gud",
0

where

2p(2p+1) ... (2p+n—1) pP-1
o= ~ ’ as n — oco.
n! I'(2p)

Since p < 1, we can select a sequence m = m, of positive integers

such that
Z'mvg?n,<p7 ng,,<17
v=1 1

and set b, = —g,, if » = m, for some » and b, = 0 otherwise. We ask
in addition that for any integer d, we have m, 4 = m,-+d, infinitely often.

Then
[o0]
"
= Yo,
0

where a, = 0 if n = m,, and a, > 0 otherwise. Also
M(ryf)~ Mr,G(z)]~ (1—r)".

This proves Theorem 3 if ¢ = 1.

In the general case we write p /C instead of p and f (2°) instead of
f(z). For each root of the equation f(2) = w in |z| <1 there are precisely
O roots of the equation f(°) = 1 in |¢| < 1, so that the resulting function
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is still mean p-valent. Also
Mrs f(9)] = M(°, f(2) ~ (1—5C) 7210 o ¢-201€ (1 _py-20iC

as required. Finally,

f(zo) = S anznO’

$o that the indices of non-zero terms are all multiples of . If », are the
successive indices of non-zero terms we deduce that Ny 1—n, = C, and
since @, ; = ... = dy, q = 0, for infinitely many » we must have n, L1—M,
= dC for infinitely many » and any fixed d. This completes the proof
of Theorem 3.
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