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Introduction. Let m be a bounded function on R™ and define the mul-
tiplier operator T by the Fourier transform equation (T f)*(¢) = m(§)f(§).
Such an operator is always bounded on L2, but m must satisfy some stronger
condition in order that T be bounded on other spaces. Let [z] be the
greatest integer function. Given a multi-index a = (ay,...,ay), let |a| =
a3 + ...+ a,. We say a multiplier satisfies the condition M(s), 1 < s < o0,
if

sup  sup f |D*m(€)|°d€ < oo
|a|<[n/s]+1 R>0 {R<|¢|<2R}
The condition M(2) was introduced by Hérmander [3] in 1960. He proved
that such a condition guarantees T is bounded on all the LP spaces, 1 <
p < 00. (See [1, 5, 7] for s # 2.) We call a multiplier satisfying an M (s)
condition a Hormander multiplier.

There are two standard methods for proving the boundedness of these
multiplier operators. Hormander’s approach is to consider a sequence of
bounded operators which converge to T and define T as the limit of such
operators; the other is to use Littlewood-Paley theory (see [6]). In either
case, given a function f in LP, T f is defined as an L? function.

Hormander’s construction involves a sequence of multipliers my defined
by multiplying m by smooth cutoff functions. Let Tx be the multiplier
operator associated to my. Hérmander proved that the operators {Tn}%-,
are bounded on L? with norms independent of N. It follows from this that
ITfll, < ClIfllp for all f € S and hence, by continuity, T’ defines a bounded
operator on LP. In analogy with the study of singular integral operators,
we consider the pointwise convergence of the operators Ty to T for f € LP.
To prove the pointwise convergence, we use the maximal multiplier operator
T*, where T* f = sup |Tn f|. The main result of this paper is the following
theorem.

THEOREM 1. If m € M(s), 1 < s < 2, then there is a constant C = C(p)
so that

NT*fll, < C@Nfll,, 1<p<oo,
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and

" cQ

iz < 17 5@ > M1 < S il o
As a consequence of this result and standard arguments, we get the next

theorem.

THEOREM 2. If m € M(s), 1 < s < 2, then F~1(mnf) converges to
F~Ymf) almost everywhere for all f € LP, 1<p<oo,and f € H'. =

I would like to thank Richard J. Bagby for several helpful conversations
concerning this work and the referee for pointing out some useful ideas.

Results. We begin by recalling Hormander’s construction. Let & €
C*™ be nonnegative, with supp(®) C {1/2 < |¢] < 2} and {1/v2 < [¢] <
V2} C {®(€) > 0}. Set

w(€) = 8()/ D B(27%€)

so that, for £ # 0,

w .
Y e =1.
j==—0o
Define on by pn(€) = Ef_’___N @(279¢), for N = 1,2,... Notice that 0 <
on < 1, supp(pn) C {27V < J¢] < 2NM*1}, and {27V < J¢] < 2V} C
{en(€) =1}
Define a sequence of multipliers {myn}%-, by mny = ¢onxm and let Ty

be the multiplier operator associated to my. Note that for f € S,

ITNf = Tflleo < |[(mn —m)f]ls — 0

since my — m pointwise and ||my — M|l < 2||m||lco. Thus, Tx f(z) —
T f(z) almost everywhere.

Since we are interested in the pointwise limit of Ty f, the first question
to consider is whether T f is a well defined function for almost every z.
Suppose that m is a Hormander multiplier and f € LP. Then Tf € LP so
that (T f)" is a temperate distribution. Since oy € C®, it follows that the
inverse Fourier transform of pn(T f)” is a C* function [4, p. 191]. Since

(1) (InF)* =mnf = (enm)f = en(mf) = on(T )",

we see that Tnf € C*. Further, this shows that in order to study the

pointwise convergence of Ty f it is enough to consider summability defined

in terms of the functions ¢p. R
Therefore, we consider the operators Sy defined by (Snf)* = ¢n f and

let $* be the associated maximal operator, S*f = supy |Sn f|. Our results

about multiplier operators are a consequence of the theorem below.
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THEOREM 3. There is a constant C = C(p) so that

IS*flle L C@ISfllp, forl<p<oo,
and

e €R™: 5% 5(z) > A} < S D7l m

As above, Sy f — f almost everywhere for all f € S. Thus we get the
following result.

COROLLARY 4. If f € LP, 1 < p < o0, then SNy f converges to f almost
everywhere. m

Proof (of Theorem 3). The function ¢, is identically 1 on {1/2 < |£] <
2} and 0 outside of {1/4 < |£| < 4}. Define two smooth functions, ¥ and 7,
by

— 1- "4 (f) fOl‘ lEl S la _ 1 for IEI S 1,
~(&) = {o g >l MO= {wl(e) for [€] > 1.

Note that ¢1(€) = 7(€) — K(£); moreover, pn(€) = n(£/2V 1) — w(2V-1).

Fix ¢ > 0 and define the operator H, by (H.f)*(&) = n(e€)f(€) for
f€S. Let H=F"1(n) and set H.(y) = e "H(y/c). Then H.f(z) =
(H * f)(z). Since n € S, it follows that H and the least decreasing radial
majorant of H are both in L. Thus, the operator H* defined by H* f(z) =
Sup,so |He f(z)| satisfies the estimate H*f(z) < C - M f(z), where M f is
the Hardy-Littlewood maximal function [6, p. 62].

Next, consider the operator K, defined by (K.f)N€) = x(€/e)f(€) for
f €8. Let K = F~Y(k). Thus, K. f(z) = (K1/. * f)(z) and as above we
see that sup,o [Kef(2)] < C - M(2).

Observe that for f € S,

Snf(z) = (F N enf))(z) = (F1({nE/2¥"Y) - s(2V16)} ))(2)
= (Ha-n f)(z) = (Kp-n f)(2).

This implies that |Sny f(z)] < C - M f(z). It follows that S* is a bounded
operator on LP?, for p > 1, and weak-type (1, 1). This completes the proof
of Theorem 3. =

The proof of Theorem 1 is an easy consequence of Theorem 3 and inequal-
ity (1). Let f € S. By (1) we have Ty f = Sn(T f), so that T*f = S*(Tf).
This implies that ||T* f|l, < C||fllp, for p> 1. If f € HY, then Tf € L! (in
fact, it is in H!), so that T*f is in weak-L!. =

The proof of Theorem 3 shows that S*f(z) < C - M f(z) for almost
every z. It follows that the conclusion of the theorem is true on weighted
L? spaces when the weight w satisfies the A, condition. We define the
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space LP as the collection of measurable functions f so that ||f|lpw =
([ 1f(2)|Pw(z) dz)'/? < oo.

COROLLARY 5. Let1 < p < 00 and w € A,. There is a constant C(p, w)
so that

IS* fllpw < C(@y W) fllp,w> forl<p<oo,
and

w({z e R :5f(@) > ) € oDyl m

Since these pointwise convergence results depend only on the L? bound-
edness of the multiplier operator and properties of the Hardy-Littlewood
maximal function, analogs of Theorems 1 and 2 are also true for functions
in weighted LP spaces, whenever the weight satisfies the appropriate condi-
tions for the multiplier and the maximal function. We refer the interested
reader to [5, 7]. Note that the conditions on the weight used for the bound-
edness of the multiplier operators on L? guarantee the boundedness of the
maximal function.
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