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0. Introduction. The problem of whether every Banach space (always
infinite dimensional in this article) has a separable quotient appears to
have been considered since 1932 although we cannot find an explicit
mention of it earlier than 1969 [10]. In [9] and [10], it is proved that
C(X) has a separable quotient, where X is compact Hausdorff.

In Section 1 of this article we give six other properties equivalent
to this one. Most of these are known, some can be found in such articles
as [10] and [2]. The main result, which we believe to be new, is that
a Banach space has a separable quotient if and only if it has a dense non-
barrelled subspace. (Thus it may be significant that there exist spaces
of all of whose dense subspaces are barrelled [4].) We also give some simpli-
fied proofs of the known results. In order to make the work self-contained
we prove all results.

1. We now list 7 properties which a Banach space EF may have.
Later we prove them to be equivalent. It is unknown whether every
Banach space has these properties. (P 1016)

P,. E has a separable quotient.
That is, £ can be mapped onto a separable Banach space.
P,. & has a dense mon-barrelled subspace.

Dense barrelled subspaces are plentiful, however (see [13]).

An §,-subspace is the union of a strictly increasing sequence of closed
subspaces. An 8,-space is a locally convex space which is an §,-subspace
of itself.

P;. E has a dense S,-subspace.
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A BE-subspace is a proper subspace of £ which can be given a larger
complete norm, i.e., it is a Banach space properly and continuously in-
cluded in E. For example, ! is a Bc,-subspace of ¢,.

P,. £ has a dense BE-subspace.

If in the preceding definition Banach is replaced by Fréchet, we have
an FE-subspace.

P,. E has a dense locally convexr FE-subspace.

P,. There exists a sequence {f,} in E' with ||f,| = 1 for all nand \J (M fi
dense in E. n=1 i=n

Note that f, — 0 weak-*. Let us define a normal sequence to be a se-
quence {f,} < E’ with ||f,|| = 1, f, — 0 weak-*. It has recently been proved
independently by A. Nissenzweig and B. Josefson (see [6]) that every
Banach space has a normal sequence. We may express P, as follows:

00 oo

There exists a nmormal sequence {f,} with \J () fi dense.

n=1i=n
P,. There exist closed subspaces A and B of E with A + B a dense proper
subset of E.

Remark on P,. It follows from P, that 4 and B can be found so
that AnB = {0}, i.e., A and B are quasicomplementary. To see this, observe
that P, implies P, (see below), thus, as remarked in [10], p. 188 (2),
E has a quasicomplemented separable subspace. From this it also follows
that K has a gquasicomplemented separable subspace if and only if it has
a quasicomplemented subspace.

The equivalence of P,, P, and P, was given in [2], p. 512-513, and
that of P, and P, in [5], p. 85. Our proofs are somewhat simpler. That P,
implies P, follows from [1], p. 274; the special case needed here is given
an easy proof.

1.1. P, implies P; Py implies P,.

Let F' be a dense locally convex FE-space. If (¥, T) were barrelled,
Ptak’s open mapping theorem applied to the identity map from (F, T})
to (F, T;) would make Ty, = Ty, and so F would be a closed subspace
of E, hence F = E.

Note. This argument fails if we omit ‘locally convex’’ from P;
indeed, £ may have a barrelled subspace which is a dense FE-subspace.

1.2. P, implies P,.

Let S be a dense non-barrelled subspace of E. Let B be a bounded
barrel in § which is not a neighborhood of 0. (If B is not bounded, replace
it by BnD, D being the unit disc.) Let F be the span of B, the closure of B
in E. Then B is not a neighborhood of 0 in F (B = BnS). Now B is an
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absolutely convex, bounded, closed (hence complete) subset of E, and so
its gauge p is a complete norm for F which is larger than the relative
topology of E (see [16], 6-1-17). Thus F is a dense BE-subspace of E.
(F # E, since B not a neighborhood of 0 in F implies F is not barrelled.)

Note. W. H. Ruckle suggests the following proof of 1.2. Let {f,}
be unbounded, but convergent on a dense subspace. Then

F = {x: limf,(x) exists}

is a BE-subspace with |z, = |iz||+ sup |f,.(®)|.
1.3. P, implies P;. '
This is clear since P, is true for the separable quotient.

1.4. P, is equivalent to P,.
If |US, is dense, let ||f,| =1,f, =0on §,.

1.5. THEOREM. Let E be a quasibarrelled topological vector space.
The following are equivalent:

(i) E 18 barrelled. ' )

(i) B 48 w-barrelled (every w* bounded sequence is equicontinuous).

(iii) £ i8 c-barrelled (every w* Cauchy sequence is equicontinuous).

(iv) B is sequentially barrelled (every w* convergent sequence is equi-
continuous).

(v) (E', w*) 18 sequentially complele.

This improves the result of De Wilde [3], Theorem 2.7, that (v) implies
(i) for metrizable spaces, since metrizable implies quasibarrelled. The
implications (i) = (ii) = (iii) = (iv) are frivial. The implication (iv) = (i)
is proved by Webb [14], Proposition 4.1. The implication (iii) = (V)
is obvious. Finally, assuming (v), let A ¢ E’ be w*-bounded. Then A
is B(E’, E)-bounded by the Banach-Mackey theorem (see [8], 20.11(8)),
hence it is equicontinuous, since ¥ is quasibarrelled. Thus E is barrelled.

We note that (iii) = (v) under the weaker hypothesis that F is rela-
tively strong. This follows from [7], Theorems 2.4 and 3.1.

1.6. LEMMA. Let X be a metrizable S,-space. Then X' cannot be w*-
sequentially complete.

Let X = US,,2" €S, \8,_,, and 2" - 0. Let f, e X' with f;, =0,
Jo =fn_y on 8,_,, and f,(z") =1 for n = 2,3,... For all z, {f,(x)} is
eventually constant but its pointwise limit f is not continuous, since f(z")
=1 for all n.

1.7. COROLLARY. A metrizable S,-space cannot be barrelled.

This generalizes the known result that a metrizable space of count-
able dimension cannot be barrelled. More precisely, one can prove that
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a barrelled §,-space must have the inductive limit topology by the closed
subspaces and inclusion maps.

1.8. P; implies P,.

This follows from 1.7.

1.9. THEOREM. Let E have a dense mon-barrelled subspace; then E
has an increasing sequence {S,} of closed subspaces with | ) S, dense and
dim®8,/S,_, =1 for each n. |

Let F be, as in 1.2, a dense subspace having a barrel B which is not
a neighborhood of 0 in F and which is closed in E. Let

B1=B’ —B+{Zaz |a‘l| }

where 1, z2, ... are about to be defined. Each B, is closed and not ab-
sorbing. (Otherwise, it would be a barrel in E, hence a neighborhood of 0,
and so each B; (7 < n) would be a neighborhood of 0 in its span; but B,
is not.) We first choose z'¢ 2B,, |z =1, and f, e B’ with f,(2') =1,
|fil <1/2 on B,. Since the span of B, has infinite codimension, it does
not include fi', thus there exists x? with |j»?| =1, f,(2?) = 0, x®¢ 4B,.
Then f, € E’ with f,(2%) =1, |f,| <1/4 on B,. The span of B; does not
include fi- N f;, thus there exists 2 with ||lz3|| = 1, f, (#3) = fy(«*) = 0, x3 ¢ 8B,,
and f; € B’ with f,(2%) = 1, |fs| < 1/8 on B;. In general,

”.,Dn” =1, fi(wn) = 0 for i < n, fn(m") = 1’ Ile < 2

on B;, and so |f;(z") < 1/2¢ for i > n.
Now let x € B,. Fix a positive integer k. Let a; = —f;,,(®). So
la,| < 1/2%+1, Let

n—1
) k+i
@ = —frin (‘”+2 oz )

t=1

S0 |a,| <1/2¥t"~1 (by induction).

Let
00
— 2 aiwk+:
i=1

then |2l < 1/2* and f,,,(x+2) =0 forall n =1,2,...

Indeed,
Jen(@+2) = fun @+ Zaw’"“)+an+ 2 @i fuin (@) = — a, +a, +0.
Thus, setting o
S = N fit
i=k+1

we have proved that d(z, 8;) < 1/2%. Setting § = | J S, we haved(z, S) = 0.
Thus 8§ is dense in B,, hence dense in its span, hence dense in E.
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1.10. P, implies P,.

With {S,} asin 1.9, let §, = 8,_, ®y". Let q: E - F = E|(8, be the
quotient map and suppose that, for some v € ', v(qy™) = 0 for all n.
Then, with ¢': ¥’ — E’, ¢’v vanishes on (JS,.

Indeed, for xz € S,,

n—1

n—1
r = 31—1—2 a0y, qv(x) =v(q) =2 a;v(gqy’) = 0.
i1

1=1

So we have ¢’v = 0. Since ¢’ is one-to-one, v = 0. Thus {gy"} is a to-
tal sequence and F' is separable.

1.11. P, implies P,.
See the Remark following P,.
1.12. P, implies P,.

We make A + B into a BE-space by means of the inductive topo-
logy by the inclusion maps, i.e.,

|zl = inf{lla]l+b]: # =a+b, ac A, beB}

(see [16], Section 13-4). |
Thus the seven properties are equivalent.

2. We present some comments on the seven equivalent conditions.
As noted above,

() every Banach space has a normal sequence.

Previously, it had been known that each property P, implies (). In fact,
for E separable the unit disc of E’ is w*-metrizable, thus P, implies (*).
If F is a dense non-barrelled subspace, by 1.5 we can find an unbounded
sequence B ¢ E' with B pointwise bounded on F. Thus P, implies (*).
If F is a dense BE-subspace and ¢: ¥ — F is inclusion, ¢’ is not an isomor-
phism, thus P, implies ().

It is also easy to see that a reflexive space has a normal sequence,
for if not, its unit disc, being weakly compact, is weakly sequentially
compact (see, e.g., [15], 13.4, Example 2), and so the unit circumference
would be norm compact.

2.1. Example. The implication P, => (%) is trivial and leads to the
hope that (x) implies P,, thus solving our main problem. This is false,
since, e.g.,

E = c¢,nbs, where bs = {a:: lle)] = sup‘zn‘xk‘< oo}.
k=1

Here {f,}, with f,(z) = z,, is (essentially) a normal sequence, but
the set given in P, is not dense, since E is not separable.
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Howe{rer, P, does show that the main problem is equivalent to the
existence of a normal sequence with an additional property.

2.2. Remark. Another way in which (x) would solve the main
problem is that it might be possible to find a sequence {a,} of real numbers,
tending to infinity, such that S, = {#: a,f,(x) > 0} is dense. Since S,
cannot be barrelled, P, would hold. This also is not possible in general.

2.3. Example (A. K. Snyder). Let ¥ and f, be as in 2.1. Let {a,}
be a strictly increasing sequence of positive numbers tending to infinity.
We may assume that a, > 1. Let {p,} be a sequence of positive integers
increasing to infinity with p, < a, for all n. Let

—1"‘21%

Define z € E by 2z, = 0, and
. ll [Dor—1  for @y, < @ < @y,
! —1/py for gy < i< @opqa-

We assert that d(z,S8,) > 1/4 (see 2.2 for 8,). If this is false, let
le— 2] <1/4, z € 8,. Now
e \o for j odd,

1 for j even.

Thus
lf} <1l/4 for j odd,
Ty .
b > 3/4 for j even,
and so
| 1
(1) ‘Z{mi: Qe <t < i} i> 0 for all k.

Since z e S,, p,x, > 0, thus, for large k, ¢;,_, <1t < ¢, implies
Ip;x;|< 1/2. It follows that

1
and so
q 1
l 2,{'” G <T@} | < it = —,
Pr—1 2

contradicting (1).

2.4. Example (A. K. Snyder). However, the space of Example 2.3
does have a separable quotient for q: E — bs given by

(n+1)2—1

=3 )

k=n?



SOME BANACH SPACE PROBLEMS 223

is onto, and bs is equivalent to I* which is known to have a separable
quotient.

2.5. Remark. It can be checked that the space of Example 2.3
has a dense non-barrelled subspace independently of 2.3 and the fact
that P, implies P,; namely,

{x: x,, = 0 for almost all n}

is a dense S,-subspace. Moreover, the quotient of ¢,nbs by {r: x,, =0
for all n} is separable.

2.6. Remark. The statement P, is equivalent to

P,. For every set 8 and closed subspace A of 1,(8) of infinite dimension
and codimension there exists a closed subspace B such that A + B is a dense
proper subspace.

Let E be a Banach space; then there exist S and a subspace A of
1,(8) such that E = I,(8)/A. If A is finite dimensional, then 1,(S) = E@ A
and the map of ,(8) onto a separable space does the same for E. If A is
infinite dimensional, let A 4+ B be dense and proper. Then @ [B] is a dense
proper BE-subspace. Conversely, P, follows by applying P, to I,(8)/A.

3. In this section we prove that every Banach space has a strlctly
larger barrelled norm and a larger non-barrelled norm.

3.1. LEMMA. Let E be a barrelled metrizable space and H a Hamel
basis for E. Then all but a finite number of the coefficient functionals are
discontinuous.

Suppose that there is a sequence {P,} of continuous coefficient func-
tionals corresponding to {"} = H.For an arbitrary sequence {s,} of positive
real numbers, {s,P,} is w*-null, hence equicontinuous. Choose scalars
a, #0 with a,h” — 0. The set {a,h"} is bounded, hence {s,P,(a,h")}
= {s,a,} is a bounded sequence for any choice of {s,}. This is impossible.

3.2. THEOREM. Every Banach space E has a larger non-barrelled norm
and a strictly larger barrelled norm.

Let H be a Hamel basis for £ and put

- Z|t|-||h|| for z = Zth, heH.

For each h € H the corresponding coefficient functional P satisfies
|P(x)| < p(x) and it follows from 3.1 that (F, p) is not barrelled. Next,
let f be an unbounded linear functional on E and write q(x) = |lz||+ |f(x)
Then (E, q) is the direct sum of a one-dimensional space and F = (f4, q),
hence it is barrelled, since, as we now show, F is barrelled. Indeed, ¢(z)
= |lz|| for € F, and so F is a maximal subspace of the Banach space E,
hence it is barrelled (see [13]).
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The second result of 3.2 says that certain barrelled spaces have smaller
complete norms. Others do not, for example, a space of countable dimen-
sion or a space such as (1'%, ||-|l,) which has a larger Fréchet topology.

(lwlly = 2 |anl.)
3.3. Ewvery finite-codimensional subspace 8 of a Banach space E is a bar-
relled space which has a smaller complete norm.

We may assume that S is of the form (M {fi-: ¢ =1, 2, ..., m}, where
each f; is an unbounded linear functional on E,

E =8®{z, a2 ...,2™} and fi(a') = &.
For a € F and f € E’, write (a®f)(x) = f(x)a. Now set

j I-fﬂ@f”
iz

a projection of E onto 8. Let g,, g5, ..., 9, € B’ with g;(2) = 6}, H = N g;--
Then A = P|H is an algebra isomorphism of H onto S with the inverse

B =Q|S, where @ = I—Zw’\ggi.

.Since B is continuous, it transfers from H to S a smaller norm ||z
such that (S, ||-||z) is equivalent to H (the original norm of E on H).

3.4. Example. Take m =1 in the construction of 3.3 and omit
the subscripts and superscripts. Assume that for y € B, # = h+ax, and
h € H we have |z|| = ||k||+ |a|. (This is equivalent to, the original norm.)
Then, for y € H,

Iyle = 14yl = lly —f(@)ll = Iyl + (@)l

This is precisely the norm defined in the second part of 3.2 and gives
another proof that it is barrelled. In fact, (H, ||-||4) is equivalent to 8
(original norm of F on 8).

3.5. COROLLARY. The second nmorm q defined in 3.2 has the property
that (E, q) is of codimension 1 in its completion.

In 3.4, (H, ||-|4) is equivalént to 8 which is a dense maximal subspace.

3.6. Example. A vector space E with two mon-comparable complete
norms p and q such that (E, p + q) is barrelled.

Let (E, p) be a Banach space, 8 a dense maximal subspace, and ¢
any smaller complete norm for 8 (e.g., 3.3). We extend ¢ to E by ¢(y + ax)
= q(y)+ |a| for y € 8, and fixed = ¢ 8. Then p and ¢q are complete and
non-comparable (S is g-closed in E). To see that (E, p+q) is barrelled
note that p and p + q are equivalent on 8, since ¢ < p on S. Thus (S, p +q)
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is barrelled. Now S is a closed subspace of (¥, q), hence of (E, p+q),
and so (E,p-+q) is the direct sum of a barrelled subspace and a one-
dimensional one.

4. The following result is a step in the direction of P,.

4.1. THEOREM. Every Banach space E has a dense non-Baire subspace S;
indeed, 8 may be included in the union of a sequence of closed proper sub-
spaces of K.

Let {z'} ¢ E and {f;} = E’ be bi-orthogonal. For each z ¢ E, ¢ > 0,
and + =1,2,3,..., choose one scalar a«; such that a;+f;(z) is rational
and |a;| < ¢/2°. Let

A = {wi}u{w—}- Zaixi},

where z € E, ¢ > 0, and the a; are chosen for z, ¢ as specified. Now fix
n>1 and write
n
P=)'20f; '
t=1

(a8 in 3.3), a projection onto U = span {z!, 2, ..., 2"}. Let C be a subset
of PA which has fewer than n members. Then H = P! (spanC) is a closed
subspace of ¥ and is proper. (Choose y € U\spanC. Then Py = vy ¢ spanC,
so y ¢ H.) Note that PA is countable, and so there are at most countably
many such subsets C, hence countably many H, and the union of all
such H contains each point z e spanA which is a linear combination
of fewer than n members of A. (Pz e C for some C, so z € P~'C.) Since
every member of span A is of this type for some n, we thus have span A4

covered by the union of countably many proper closed subspaces. Finally,
span A is obviously dense.

4.2. Remark. With the notation of 4.1, let
B = {x € E: f;(x) is rational for ¢ =1,2,...}.

It is shown in [12] that the span of B is also dense and non-Baire
and it is barrelled as well.

5. Questions. Besides the famous questions indicated in Section 1
we also ask:

9.1. Must (E, p + q) be barrelled if p and ¢ are non-comparable com-
plete norms for a vector space E (cf. 3.6)% (P 1017)

5.2. Must a countable codimensional subspace of a Banach space
have a smaller complete norm (cf. 3.3 and [13])? (P 1018)
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