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ON THE CONSTRUCTION
OF CYCLIC QUADRUPLE SYSTEMS

BY

K. T. PHELPS (ATLANTA, GEORGIA)

1. Introduction. A Steiner quadruple system of order » is a pair (Q, q)
where @ is an n-set and ¢ is a collection of 4-element subsets of @, usually
called blocks, such that cvery 3-element subset of @ is contained in cxact-
1y one block of ¢. Hanani [2] has proved that a Steiner quadruple system
of order m, or briefly SQS(n), exists if and only if » =2 or 4 (mod 6).
In the excellent survey of Steiner quadruple systems, Lindner and Rosa [4]
Taise a series of questions. This note is intended to answer two of them,
concerning cyclic SQS(n).

An SQS(n) is called cyclic if it has an automorphism consisting of
a single cycle of length n. If (@, ¢q) is a cyclic SQS(n) with cyelic auto-
morphism (0,1,2,...,—1), then with each block {r,y,z,w} of ¢
{x <y <2<w) one can associate a (cyclically ordered) quadruple of
differences (a, b, c,d), where ¢ =y—2, b =2—y, c=w—2, d =v—w
{mod =). Lindner and Rosa [4] eall a quadruple of differences symmetric
if either

a=c¢ (orb=d)
or
a=band ¢c=d (or b =c¢ and d = a).

Then a cyclic SQS is said to be S-cyclic if all of its difference quadruples
are symmetric. Finally, it is stated that all known ecyclic SQS are S-cyclic
[4]. One purpose of this paper then is to construct a cyclic SQS that is
not §-cyeclic. In particular, we construct one of order 20, thereby showing
that there are at least two non-isomorphic cyeclic SQS(20) (Question 5.1

in [4]). A secondary purpose is to establish some sufficient conditions for
a cyclic SQS(n) to exist.

2. Constructions of Steiner quadruple systems. A 3-quasigroup of
order n i8 a pair (P, ¢, ,)), where P is an n-set and {, ,) is a ternary opera-

tion on P such that if any 3 of the terms in the equation {z,y,2) =w
are given, then the fourth is uniquely-determined. A 3-quasigroup is said
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to be commutative if, for all x, y, 2 € P,
{wyy,2>) =L&,2,9> =<2,9,2) =Y, &, 2.

It is said to be i¢dempotent if {x, x, x) = x for all z € P and diagonalized
if, for any =, vy, <z, 2,2> = {y, ¥y, y) implies £ = y. On a commutative
3-quasigroup (P, {,,») we state the following conditions:

(a) for all z,y eP, if {z,2,y> =2 and {(x,y,y) = w, then

{<z, 2, w), {2, w, wd} = {w, y};

(b) for all ordered pairs (x,y), if <v,x,y) =% and <{uw,u,z) =,
then
{v,v,u) =y and <y,y,9) =a.

LEMMA 1. A commutative 3-quasigroup of order n that satisfies condi-
tion (a) can exist only if » =1 or 2 (mod 3).

Proof. Let (P, <{,,>) be a 3-quasigroup that is commutative and
satisfies (a). Define a groupoid on P by z*y = (z,x,y) (and ysx
= {y, ¥y, z)). Then the groupoid (P, *) will be self-orthogonal (because
of (i)), and thus it must be diagonalized. If (P, *) is diagonalized, then,
clearly, so must be (P, {,,>). However, since (P, {,,>) is commutative,
the number of times an element occurs off the diagonal must be divisible
by 3. Hence » =1 or 2 (mod 3).

We remark that this necessary condition on # is not sufficient. The
author has determined, using a computer, that there exists no one of
order 7. In the previous paper [5] the author proved the following results
concerning these 3-quasigroups:

LEMMA 2 [5]. There exisis a commutative and idempotent 3-quasigroup
that satisfies (a) for all orders m =2 or 4 (mod 6) and n = 5* for t>1.

LEMMA 3 [5]. Given a commutative 3-quasigroup (P, <, ,>) of order p
that satisfies (a), one can construct an SQS(2p) (Q, q) as follows:

(1) @ =P x{0,1};

(2) for all triples {x,y,z} < P,

@4 Ygy 24y <&, Y, 2D401} € for i =0,1

(with the subscripts reduced mod 2);
(3) for all pairs x,y < P,

{Toy Yoy <&, @, YD1, <Y, Y, T)1} €4.

"A 3-quasigroup of order p is said to be eyclic if it has an automorphism
that consists of a single cycle of length p. Then, as an immediate corollary
to Lemma 3, we have
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COROLLARY 1. If there exists a cyclic 3-quasigroup of order p, p =1
(mod 2), that is commutative and satisfies condition (a), then there exists:

a cyclic SQS(2p).

Note that the construction in Lemma 3 is in effect a generalization
of a construction originally due to Doyen and Vandensavel [1] (i.e., Con-
struction 2 and Problem 4.11).

LEMMA 4. There exists a commulative, idempotent 3-quasigroup that
satisfies conditions (a) and (b) for all orders n,n = 2 or 4 (mod 6) andn = b'.

Proof. The 3-quasigroups constructed in Lemma 2 satisfy condition
(b) as well. For n = 2 or 4 (mod 6), there exists a commutative 3-quasi-
group that satisfies the identity <z, x,y) = y (generalized idempotent),.
and thus will satisfy (a) and (b). For n = 5%, one can construct examples.
using GF(5'), that is (x,y,2) = 2(x+y+2) (see [5]).

Next we present another construction of SQS.

LEMMA 5. Given a commutaiive, idempotent 3-quasigroup (P, {,,>) that
satisfies (a) and (b), one can construct an SQS (@, q) as follows:

1) @ =P x{0,1,2,3};

(2) for all triples {z, vy, 2} < P,

{w,, Yiy 24y <0, y,z>f+2}697 t=0,1,2,3;
(3) for all pairs {x,y} < P,
@0y Yiy <Oy @y Yiygy <@y Yy YDi42} €¢, ¢ =0,1,2,3;
(4) for all pairs {x,y} = P and all z € P,

@ Yos 241, <@, Y, Diya} €¢, € =10,1,2,3;
(5) for all ordered pairs (x,y) with x,y € P, where {x,», y) =z and
(z,2,2) =w, we have {Ty, Yy, %, Ws} € ¢;
(6) {xo, 2, 24, @3} € q for all x € P.
Note that in cases (2)-(6) subscripts are reduced mod 4 as necessary.
Proof. If |P| = p, then the total number of blocks from (2)-(6) is.

2\ o (P) 1 an(P) g [P) o, _ PUP—DI4P2)
! (3)+2 (2) +4”(2)+2 (2) TP g

Since this is the right number of blocks for an SQS(4p), all we need
to do is to show that every triple occurs at least once.

Case (i). All triples of the form {z;, ¥, #2;} will occur in a block of
type (2).

Case (ii). All triples of the form { iy Yi ,+,} for j =1,2,3 will
occur in blocks of type (2), (3) or (4). For j = 1, this is obvious. For j =3,
from the fact that (P, <,,)) is a 3-quasigroup it follows that blocks of
this form will occur. In the case of j = 2, property (a) assures this (as in
Lemma 3).
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Casge (iii). Triples of the form {, ¥;,,, #;;;} Will occur in blocks
of type (4) or (b), since there exists a w such that {z, w,y) =z fw # g,
‘then, clearly, it will occur in some block of type (4). Otherwise, it will
oceur in a block of type (5). Property (b) assures this. If (v, z,y) =2
and <2,2,2) =w, then <(w,w,2) =y and <y, y, w) =x. Thus
{®o, Y1, %3, Wy} € ¢ Dy construction, but then so is {,, y,, 2y, s}, since
{2, 2,x) = w and {w, w,z) = y. In a similar manner one can show that

{2y Ysy 21, W} €q  and  {w3, Yo, 23, Wy} € ¢.
Thus we conclude that {z;, ¥;,,,2;,;} €qfori =0,1,2,3.
Case (iv). All triples of the form {x;, #;, 2;}, obviously, occur in
blocks of type (6).
COROLLARY 2. The SQS constructed in Lemma 2.5 will all have the
-automorphism x; —> x;,, with the subscripts reduced mod 4.

This is obvious from construction except for blocks of type (3). For
these blocks, case (iii) gives us the result.

THEOREM 1. If there exists a cyclic 3-quasigroup of order p, p =1
{mod 2), that i8 commutative and idempotent and satisfies conditions (a)
and (b), then there exists a cyclic SQS (4p).

This follows from Lemma 5 and Corollary 2.

We have established some sufficient conditions for a cyclic SQS(n)
to exist. To be of interest, we should show that they are not vacuous.

COROLLARY 3. There exists a cyclic 3-quasigroup of order 5 that is com-
-mutative, idempotent and satisfies conditions (a) and (b). Hence there exist
-aleyclic SQS(10) and a cyclic SQS(20).

For the proof, let P = {0,1, 2,3, 4} and

{Zyy,2) =2(x+y+2) (mod 5) for x,y,2z€P.

3. Cyclic SQS(20). The cyclic SQS(20) constructed above (Corollary 3)
<contains subsystems of order 10. Hence it is not isomorphic to the S-cyeclic
SQS(20) constructed by Jain [3] (see [4]). Furthermore, it is easy to see
that it is not S-cyelic. The base blocks for our cyclic SQS(20) are the fol-
lowing: '

{Loy 20, 31, 24},
{107 207 417 48}7
{Los 30y 215 23},
{10’ 207 017 13}7
{10’ 307 017 33}7
{007 107 11) 48}’
{107 30’ 11’ 03}’
{Los 30y 41y 13}

{107 407 117 23}7
{10’ 007 017 28}’
{107 207 30’ 22}7
{107 20’ 40’ 42}7
{Los 205 335 02},
{40’ 11) 387 02}7
{05, 05, 0, 0,3,
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The cyclic permutation z; — (£+1);4, With #-+1 reduced mod 5
and with ¢+1 reduced mod 4 applied to these blocks will give us our
cyclic SQS(20). To see that it is not S-cyclic we present an isomorphic
<opy with @ = {0,1,2,...,19}:

Base block Difference Base block Difference
quadruple quadruple

0,5 6,9 (51,811 {0,1,6 13} (1,5 7,17
{0, 3,710} (3,4,3 100 {0,239 (21,6 11)
{0,1,9, 10} (1,8, 1,100 {0, 4,9, 11} (4, 5, 2, 9)
0,1,3 8 (1,2 5 12) {0, 4, 8, 14} (4, 4, 6, 6)
0, 1,5 14} (1, 4,9, 6) {0, 2 4 12} (2, 2, 8, 8)
{©, 2 65 13} (2,3,8 7 {0,268 (24 2 12
{, 3 4 5 (3 1,1,15 {0, 5 10, 15} (5, 5, 5, 5)
{0, 3, 6, 15} (3, 3, 9, 5)

The cyelic permutation ¢ —¢+1 (mod 20) applied to the base blocks
above will give us a cyclic SQS(20), isomorphic to the one previously
given. Clearly, there are difference quadruples that are not symmetric.

4. Concluding remarks. Although we have shown that the spectrum
of cyclic 3-quasigroup satisfying the conditions mentioned in Section 2
is not vacuous, it is not clear that it is non-trivial. The first problem then
would be to find examples of these 3-quasigroups for small orders, say 11,
13 or 17 (P 1172). The second would be to find an infinite class (P 1173).

REFERENCES

1] J. Doyen and M. Vandensavel, Non-isomorphic Steincr quadruple systems,
Bulletin de la Société Mathématique de Belgique 23 (1971), p. 393-410.

{2] H. Hanani, On gquadruple systems, Canadian Journal of Mathematics 12 (1960),
p. 145-147.

8] R. K. Jain, On cyclic Steiner quadruple systems, Thesis, McMaster University,
Hamilton 1971.

{4] C. C. Lindner and A. Rosa, Steiner quadruple systems — a survey, Discreto
Mathematics 21 (1978), p. 147-181.

{6] K. T. Phelps, A consiruction of disjoint Steiner quadruple systems, Proceedings
8th 8. E. Conference on Combinatorics, Graph Theory and Computing, Utilitas
Math. Publishing, p. 559-568.

Regu par la Rédaction le 25. 10. 1977



