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1. Introduction. The rather remarkable work of Wilson [13] and [14],
and Walsh [8]-[11] provide new insights into the behavior of open mappings
on manifolds and, in particular, that of light open mappings. Wilson has
answered affirmatively the questions raised by Steenrod (see [2], [4],
Problems 41 and 42). These results show the existence of the various
monotone and light open mappings some of which raise dimension and
some of which have Cantor sets as point inverses.

Here we give a characterization of light open mappings in terms of
a sequence of special coverings. The question of what open mappings are
topologically equivalent to orbit mappings of actions by (topological)
groups has been of interest for some time.

Fintushel has shown in his thesis [3] that if f: M" == N*! (n =3
or 4) is a PL open mapping from the closed and connected PL manifold M"
onto another N"~! such that f~'f(x) is either a point or homeomorphic
to 8! (a circle), then f is equivalent to the orbit mapping of a local action §*
on M". Little progress has been made on this problem when f is a light
open mapping, i.e., f~'f(x) is totally disconnected (and f is open). We give
a result for certain finite-to-one open mappings on 8* (a 2-sphere). The
techniques are useful in obtaining other results. We obtained this result
prior to the announcement of the work of Edmonds [1]. His work is re-
lated to ours but does not include it.

2. Characterization of light open mappings. We prove a theorem
which characterizes light open mappings defined on Peano continua in
terms of a special sequence of coverings. A proof of the sufficiency appears
in [6]. The proof of the necessity is in part due to Eric Robinson.

Definition (Property M). Suppose that {C; =¢i,¢i,...,CL}
is a finite closed covering of a space X. We say that C; has Property M
if and only if, for each ¢ = 1,2, ..., n;,
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(1) ¢ is a finite collection {C},,C!,,..., 0}, } of pairwise disjoint
closed subsets of X,

(2) diamC}, < 1/j for 1< s < k;,

(3) if (CH)*n (C’) #0 (where G* denotes the union of the elements
of @), then, given u with 1 < u < k,, there is v, 1 < v <k, such that
0} .N0f, +0,and

(4) each x € X is contained in the interior of some element of Ci
for each' .

Definition (strong refinement). Suppose that
C; ={O§,C§,...,Oﬁ,i} and Cj={0f,0§,--~,0i,}<

are two finite closed coverings of X, where C; = {C;,, C;,, ..., C; .},
1<s<m,andt=1orj. We say that C; strongly refines C; if and only if

(1) each element of O/ lies in some element of C; for some ¢, and

(2) if some element of C! lies in an element of C;, then each element
of (7 lies in some element of C;.

THEOREM 1 (McAuley and Robinson). Suppose that each of X and Y
18 a compact, connected, and locally connected metric space and that f is a (con-
tinuous) mapping of X onto Y (f: X = Y). Then f is light and open if and
only if there is a sequence {C;} of closed covers of X such that

a) for each i, C; = {C}, C;, ..., C}, } has Property M,

(b) C;,, strongly refines C,,

(©) f(Cri) =f(Crg), where Cf = {01, Cony .oy Con}s

(d) each C;, can be taken to be connected (or a Peano continuum with
non-empty interior), and

(e) for each ye X,

) = ('j(o, y

for some nested sequence {O" )*}, where C‘ e C;, and, conversely, each such
nested sequence {(C, ) } has the property that for some y,

f—‘<y>=ﬁ(0.§,.>* and  Tnt(CE)* > f'(y)-

We shall need the following theorems in our proof of the necessity
of the special sequence of coverings.

THEOREM A ([12], p. 148). If f: X = Y is an open mapping, where
each of X and Y is a Peano space (compact locally connected metric space),
and R is a connected open subset of Y, then f~'(R) has at most a finite number
of components each of which maps onto R under f.
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THEOREM B ([12], p. 131). If f: X = Y is a light mapping, where
each of X and Y is a compact metric space, and ¢ > 0, then there is a 6 > 0
such that, for each closed and connected subset C of Y with diameter less than 4,
each component of f~'(C) has diameter less than e.

THEOREM C ([12], p. 189). If f: X = X is a light open mapping,
where each of X and Y is a Peano continuum, and K is a Peano continuum
in Y whose interior is dense in K, then f~'(K) is locally connected (and each
component 18 a Peamo continuum).

Proof of Theorem 1. By Theorem B, there is a J, > 0 such that
if C is a closed connected subset of ¥ with diameter less than 6,, then
each component of f~'(C) has diameter less than 1. Let ¢, = min([4,, 1],
and let 0, = {01, O3, ..., O, } be a closed covering of ¥ such that

(a) for each 4, 0; is the closure of a non-empty uniformly locally con-
nected and connected subset of Y (and is, therefore, a Peano continuum),

(b) each y € Y lies in the interior of a member of O,,

(¢) diamO; < ¢,, and

(d) 0; $ O; for i +#j.

Now, let O; = {C;,, Ci,,...,Cin, Dbe the finite set (using
Theorem A) of components of f~'(0;). Clearly, f(C;;) = Oi. Each C}; is
a Peano continuum (by Theorem C) with non-empty interior and has
diameter less than 1. The collection O, of all C} (1 < ¢ < n,) is a closed

_covering of X and each « € X is in the interior of an element of C} for some ¢.

Next, we show that C; has Property M. Suppose that (C})* n(C})* +# 0.
Thus, there exist p,q with 1<p<m;, and 1< ¢g<<m; such that
zeC;,nC;,. Let u be given so that 1< u<my, Since f(C}, = O,
there is a y e f~'f(x)nC; ,. Since

(CD* =f71(0)) = [ f(=),

there is v, 1 < v < my, such that y e C},. Hence, C;,ur\ C;, #90 and C,
has Property M.

Next, by Theorem B, there is a 6 > 0 such that, for each closed
connected subset C of Y Wlth diameter less than §,, each component of
f~1(C) has diameter less than 1/2." Let &, = min[é,,1/2], and let O,
= {03, 03, ..., 07} be a closed covering of X such that

(a) O? is the ‘closure of a connected and uniformly locally connected
open set (and hence a Peano continuum),

(b) each x € X is in the interior of some 07,

(¢) diam0? < &,,

(d) 0F $ OF for i +# j, and

(e) each 0% < 0j}, for some k (O, refines 0,).

Let C; = {0} ,, Ci,, ..., O} m,,} be the finite set of components of f~* (0;
Clearly, f(C};) = 07, each C:; i3 a Peano continuum with non-empty
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interior, and diamC}; < 1/2. The collection C; of all C}; (1 < i< n,)
is a closed covering of X with Property M. It follows easily that C, strongly
refines C,.

In the manner described above, we define a sequence {C,} of closed °
coverings of X such that, for each %, C, ., strongly refines C,, and C, may
be partitioned into a finite number of collections CF (1 =1,2,...,n,)
such tha.t _

(a) C¥ = {C},, Cf,, ..., Cf,,.} i8 a finite collection of pairwise disjoint
Peano contmua, each Wlth non-empty interior,

(b) Cp = {C%, C%, ..., Cy.} has Property M,

(c) f(C¥;) = OF, where Of is the closure of a uniformly locally con-
nected and connected open set in Y,

(@) f71(07) = (C)Y, )

(e) diamCf; < 1/k, and

(f) diamf(Cf;) < 1/k.

Now, we show that for each y € Y,

) = f_j(oz,.)*

for some nested sequence {(O" *1, where C‘ € C; for each i. For each y
and i, there is Cj, € C; such that Int(C})* 5 (). Since C,,, strongly
refines C; and each C,. -has Property M, it follows that (03" = (G5
Thus,

Fﬁ () > ().
Since

f(O;i)* = 0:),'7
where

, 1 ) X 00
diam 0, < —, fH03) =(C)" and gy =0,
i=1
it follows that

[ y) = ﬂ (Ci

i=1
Finally, if {(C;,)"} is a nested sequence with C;, € C;, then

N (C;)* =f"(y) for some ye Y.
i=1

This is an easy consequence of the properties of C;. Consequently,
Theorem 1 is true.
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3. Certain light-open mappings are equivalent to orbit mappings of
actions by groups — an application of Theorem 1. First, we give a special
case of a finite-to-one light open' mapping on 8 which is equivalent to
the orbit mapping of an action Z, on S2

THEOREM 2. Suppose that f: 8 = Y is a light open mapping such
that f~'f(z) consists of exactly n points (n > 1) except the two poinis a and b,
where f7'f(a) = a and f~'f(b) = b. Then there exists a periodic homeomor-
phism h of period n on S (i.e., Z, acts on S* so that the orbit map ¢p: §* = §%/Z,
~ Y s equivalent to f).

Proof. From a theorem of [12], p. 197, it follows that Y is one of
the following: a 2-sphere, a projective plane, or a 2-cell. Clearly, Y is
not a 2-cell D, since f would not be a local homeomorphism at each point
of f~!(dD) whereas the only points of S* at which f is not a local homeo-
morphism are the points a and b.

Suppose that Y is the projective plane P. We have P = A UB, where A
is a 2-cell containing f(a) and f(b) in its boundary 04, and B is a Mobius
band with boundary equal to dA such that the interior of A is disjoint
from B. Consider a component C of 8 —f~!(A4) which maps onto B —0dB.
The simple closed curve dC is mapped homeomorphically by f|dC onto
0B = 0A. Indeed, f|(CUAC) is a light open mapping of CudC =C
(which is a 2-cell) onto B. This is impossible by [12], (i), p. 197. Thus, Y is a
2-sphere §°.

Now, let a be any simple arc (homeomorph of [0,1]) in ¥ with end-
points f(a) and f(b). From results of [12] it follows that f~'(a) is a collec-
tion of » simple arcs 4,, 4,,..., 4, each with endpoints ¢ and b such
that (4;— {a,b})NnA; =@ for ¢ # j. Furthermore, f|4; is a homeomor-
phism of A, onto a. Each of the » components C; (¢ =1,2,...,n) of
8% —f~1(a) is an open 2-cell whose boundary is the union of a pair of the
simple arcs A,UA,. Index the n components and simple arcs so that
00; = A,VA,;,, except for O, whose boundary is A,UA,. Again, from
results of [12] it follows that f|C; is @ homeomorphism of C; onto Y —a.

The indexing of the components C; and simple arcs A; as indicated
above makes it possible to define a homeomorphism % of §* onto S® of
period » a8 follows. If « € 8° — {a, b}, then either # € 4, or x € C, for some 1.

Now, f'f(x) = {»,, ®3,...,®,}, Where either z; =f 'f(x)n4; or u«;
= f~!'f(2)nC; depending on the cases z e A; or z € C;. Clearly, ¢ = x,
for some k =1,2,...,n. Let h(x) = x,,, except for ¥ = n in which case

h(x) = ,. Also, h(a) = a and h(b) = b. It follows that & is a homeomor-
phism of 8% onto 8° which has the period »n. Furthermore, Z, acts on §*
so that the orbit map ¢: 8* = §?/Z, ~ Y is equivalent to f.

Alternate proof of Theorem 2. In the proof of Theorem 2 above,
Theorem 1 is not applied. However, we shall outline a proof of this the-
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orem with an application of Theorem 1 for the purpose of illustrating
a technique which may be used to prove other theorems.

It is not difficult to obtain a sequence of closed coverings of S* which
satisfy the hypothesis of Theorem 1. Consider certain triangulations 7,
of ¥ = §* with the collection S; of closed 2-simplexes in T; such that

(1) if o €8;, then f~'(¢) = {0y, 03y ..., 0,} 18 a collection of n 2-sim-
plexes in 8%, where f|o; is a homeomorphism and which are pairwise dis-
joint if and only if ¢ contains neither f(a) nor f(b),

(2) 8;,, is a subdivision of §;, and

(3) max [diamgy| f~!(¢) = {01, 04y ..., 0,} for all ¢ €8;]< 1/i.

For each i, let O; denote the collection consisting of C% which is the
union of all f~!(¢) for o € S; with f(a) € ¢ and, similarly, of C} plus all
collections O = {o},, 642, ..., 0},} for each o} €8; with a,b ¢ o} and
f1(0%) = {0}, Okay - -5 0%, }. It follows that {C;} satisfies the assumptions
of Theorem 1.

Consider a simple polygonal arc « from f(a) to f(b) consisting of 1-
simplexes in T,;. Now, f~!(a) is & collection of polygonal arcs 4,, 4,,..., 4,
which are pairwise disjoint except for their common endpoints a and b.

These can be indexed along with the components C; of 8*— | A4,, as
k=1

in the first proof of Theorem 2, so that 0C; = A,V A, , withd(, = 4,UA,.
Now, we can define a simplicial homeomorphism of period » on the nerve
N(C,) in a manner similar to the way we defined A on §8* in that proof.
Thus, it is not difficult to obtain an inverse system of nerves of coverings
of 8%, namely,

N(C,) <= N (C,) <<= N(0;) <= ...

(with s; the obvious simplicial mappings, where sk, ,(x) = h;s;(x)),
and an inverse system of cyclic groups X, = G, for each ¢,

G1<re—l= G2<i G3<i cey
where the homomorphiem 0;: G;,, = @; is induced by the simplicial
mappings s;. The inverse limit Z, of the groups G; provides an action on S3,
the inverse limit of the nerves N (C;). This motivates the following theorem
which is almost obvious.

THEOREM 3. Suppose that f: X = Y is a light open mapping, where
each of X and Y is a Peano continuum. Suppose also that {C,;} is a sequence
of closed coverings satisfying the assumptions of Theorem 1. Furthermore,
for each i, there is a finite group G; which acts simplicially on the nerve N (C;)
of C; such that I

(1) the orbit of each vertex of N (C,) is exactly the set of vertices corre-
sponding to a collection O, of C; for some k (described in Theorem 1), and
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(2) each collection C; of C; corresponds to a set of vertices which is the
orbit of a vertex under the action by G;.

There are simplicial mappings s;: N(C;,,) = N(C;) and homomorphisms
0;: G, = G; such that, for each x € N(C;.,) and g €@,;,,,

8;9(x) = 0,(9) (si(a’))-

Then the mapping f 18 equivalent to the orbit mapping ¢ of a (topolo-
gical) group G, the inverse limit G; which acts on X. That s, there is
¢p: X = X|G >~ Y and each orbit of a point z under G is f~'f(x)

Indication of proof. Clearly, X =1<iinN(O,;) and 1i<r_nG,- =@ is
a topological group.

The characterization of f by {C;} yields that, for each y € Y,

7y = Q (C3)°
for some nested sequence {(C;,)*}, where C;, € C;. Each C, is a finite collec-
tion of pairwise disjoint closed sets with non-empty interiors and corre-
sponds to an orbit of a vertex of N (C;) under @G,;. Thus, G = 1<iln G; acts

on X ~ li_lPN (C;), and f~'(y) is an orbit of a point in X. The various prop-
erties of {C;} along with the simplicial mappings s; and homomorphisms 6,
insure that each g € G is indeed a homeomorphism of X onto X.

The proof follows easily.

QUESTIONS. Is it possible to obtain a proof of Theorem 2 by using
directly the characterization of f as given by Theorem 1% (P 998)

Does the characterization of f as in Theorem 1 provide covering
sequences {C;} with either “nice” nerves N (C;) or nerves containing sub-
polyhedra homeomorphic to X which approximate N (C;) nicely? (P 999)
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