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1. Introduction. Let M be a connected n-dimensional (n = 4) Riemannian
manifold of class C* with not necessarily definite metric g. A manifold M is
said to be pseudo-symmetric [6] if the condition

(1) R-R=1L1Q(9, R)

holds on M, where R is the curvature tensor of M, L a function on M, and
the tensors R-R and Q(g, R) are defined as in (4) and (5), respectively. It is
clear that any semi-symmetric manifold (R-R =0; cf. [10]) is pseudo-
symmetric. Examples of non semi-symmetric pseudo-symmetric manifolds are
given in [2], [3] and [6]. These manifolds may or may not be conformally
flat. The condition (1) arose in the study of totally umbilical submanifolds of
semi-symmetric manifolds [1] and in considering geodesic mappings [11]
(see also [7] and [8]).

It is easy to verify that any pseudo-symmetric manifold satisfies the
condition

) R-C=1Q(9, O),

where C is the Weyl conformal curvature tensor of M, and the tensor
Q(g, C) is defined as in (5). The converse statement fails in general. An
example of conformally flat and non pseudo-symmetric manifold is described
in [2]. Furthermore, in [4] (Theorem 1) an example of a four-dimensional
non-conformally flat and non pseudo-symmetric manifold satisfying (2) is
given. In the present paper we prove that if dim M > 5, then (2) implies (1) at
every point of M at which C # 0. From this it follows immediately that
every analytic and non-conformally flat manifold M of dimension > S and
satisfying (2) is necessarily pseudo-symmetric.

2. Preliminaries. Let M be an n-dimensional (n > 4) Riemannian mani-
fold with not necessarily definite metric g. We denote by g;;, Ry, S;; and
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(3) Clu'jk = Riu'jk_ (G Sij_ghj Six +9ij S — ik Shj)

n—2
K

+m (Gnk 9ij— 9nj Gix)

and K the local components of the metric g, the Riemann-Christoffel
curvature tensor R, the Ricci tensor S, the Weyl conformal curvature tensor
C and the scalar curvature K of M, respectively. For a tensor B of type
(0, 4), with local components B,;;, we define tensors B(1), R-B and Q(g, B)
(cf. [6]) by the formulas

K (B)
B (l)hijk = m__l)(ghk 9ij—9nj gix)»
(4) (R- B)hi jkim = — le' jk R’hlm - Bhsjk R’um - Bhisk R'jlm —B,, js Rsklma
(5) Q9> Bhijutm = 9ni Bmijx + it Bumji + 9 jt Bhimk + 9x1 Bhijm

—~9mm Blijk —~Gim Bhljk —Gjm Btk — 9xm Blu'jb

where K (B) = g™ g" B, ;,. Similarly as the tensors R-B and Q(g, B) we can
define the tensors R- A4 and Q(g, 4), where A is a tensor of type (0, 2). By a
generalized curvature tensor we mean a tensor B satisfying By, = — Byy;
= By and By + By + B;; = 0 (the first Bianchi identity).

In the next section we shall need the following lemma:

Lemma 1 ([8], Lemma 2). If B is a generalized curvature tensor at a
point x of a Riemannian manifold M such that R-B = aQ(g, B), and if A and
D are symmetric tensors of type (0, 2) at x satisfying the condition R-A
= Q(g, D), then

(E—%tr(E)g)(B—B(l)) ~0,

where E = D—aA, and o is a number.

3. Main results.

THEOREM 1. Let M be a Riemannian manifold of dimension n>= 5 sat-
isfying the condition R-C = LQ (g, C) and let U be the open subset of M on
which C # 0. Then on U the condition R-R = LQ(g, R) holds true.

Proof. Symmetrizing the equality

(R O jurm = L (9> Ohnijuim
with respect to the pairs (h, i), (j, k) and (I, m) and applying the relations

Q9 Ohijuim+ QG Ojkimni +Q (9 Ohimniju =0
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([2], Lemma 1.1 (i), (3) and
(R R)pijkim + (R * R) juimni + (R * R)ympiji = 0
([12], equality (26), p. 64), we obtain
9ij (R ikirs — ik (R - pjim + G (R * S); jum — G1j (R * S)ikim
+9ki (R * 8)jmni — Gim (R * 8)jini + G jm (R * Shtni — 9t (R * )i

+Ghm (R~ S)iij = Gmi (R * )i + 91 (R * S)mnj — i (R - S)uijc = 0.
Contracting the above equation with g we find
6  (n—=2) (R Shiim+ Gt Vim— Gim Vin+ Gin Vim — Gnm Viu

+(R S)ignm + (R * S)pmix — (R S)mient — (R * Spimie = 0,

where V is the symmetric tensor of type (0, 2) of local components
Va = gkj (R 'S)huj-

This is just as (12) in [9]. From (6), in the same way as in the proof of
Proposition 1 in [9], on U we obtain

(n—4) (R-S—Q (g, -—% V)) =0,

whence
1
™ R-5=0(s, —;V).

This relation corresponds to (13) in [9]. Now the relation (7), in virtue of
Lemma 1 and the assumption C # 0, gives R-S = LQ(g, S). Substituting this
into (2) we get easily (1), which completes the proof.

As an immediate consequence of Theorem 1 we obtain the following
corollary:

CoroLLARY 1. If M, dimM > 5, is an analytic Riemannian manifold
satisfying R-C = LQ (g, C), then M is conformally flat or pseudo-symmetric.
The last result, in the case where L =0 on M, is proved in [9].

Since the Weyl conformal curvature tensor of every totally umbilical
submanifold N of a manifold M satisfying the condition (2) also satisfies the
condition of this form ([5], Lemma 2), Corollary 1 yields

CoroLLARY 2. If N, dimN =5, is an analytic and connected totally
umbilical submanifold of an analytic Riemannian manifold M satisfying the
condition R-C = LQ(g, C), then N is conformally flat or pseudo-symmetric.
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