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NOTE ON A REPRESENTATION OF UNIVERSAL ALGEBRARS
AS SUBDIRECT POWERS

BY

P. KRATOCHVIL (PRAHA)

M. I. Gould and G. Gritzer have proved a general theorem concern-
ing the problem mentioned in the title. The original proof of their theorem
seems to be rather complicated. I have succeeded in proving this theorem
by other means, not using the notion of an inverse limit. I believe that
my proof is simpler than the original one and I hope that it will stimulate
further study in representations of algebras. _

First let us recall some definitions. They can be found in Gratzer’s
book [2].

Let o = (A; F) be a universal algebra. An algebra is called a sub-
direct power of & if it is isomorphic to a suitable subalgebra # = (B; I,
B = A’ (where I is a suitable set), of a direct power ' and if

Be! = A for each projection e, iel.
(The projection is a mapping e/: AT - A, iel, such that

ef({wj}jez) = ¥

is fulfilled for each family {z,};;eA”.)

An algebraic function in </ is a mapping obtained from a polynomial
by substituting fixed elements for certain variables. An algebraic identity
of o is a statement of the form

f@yy .oy x) = 9@y ..., ) for each z,,...,x.€e4,

where f and g are algebraic functions and k a non-negative integer.

The algebra 7 is algebraicaliy complete if, for any non-negative
integer n, each mapping f: A" — A is an algebraic function in .

Now let us give the new proof of the general theorem, which was
proved by M. I. Gould and G. Gritzer in 1967 [1] and which states:

Let # = (B; F) be a universal algebra containing a subalgebra o/
= (A; F) such that 1 < card4 < oo,
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(A) =/ is algebraically complete, and
(B) each algebraic identity of </ is an algebraic identity of &.
Then # s a normal subdirect power (1) of 7.

The original proof of the normality of # is not complicated. It can
hardly be simplified and we will not deal with it at all.

Remark. If f: A¥ — 4 is a mapping, where k is a non-negative integer,
and the condition (A) is fulfilled, then there is an algebraic function ¢ in #
such that

f@yy ...y 2,) = g(xyy ... a,) for each x,,...,x,ed.

If such a function g is chosen, we shall call it extension of f. We
shall identify f and ¢, and both f and g will be ‘denoted by the same
symbol f.

LEMMA. Let the suppositions of the theorem of Gould and Grdtzer be
fulfilled and elements &, ne B, & # 7, be given. Then there is an endomorphism
e of # such that

(1) ae = a for all acA, and

(2) &e # ne.

Proof. Let n denote the cardinal number of the set 4, m = n—1.
We identify both sets, A =n = {0,1,...,m}; consequently, A is an ordered
set and a distributive lattice <(4; VvV, AD>, where a V b = l.u.b.({a, b})
and a A b =glb. ({a,bd}) for a,bed. By the Remark, the opera-
tions V and A can be extended onto B2 The axioms of a distributive
lattice (and the relations 0 = a = m) can be written in the form of alge-
braic identities of & and, by (B), they remain true in #. Thus %
= (B; V, A) is a distributive lattice, 0 is the least element, and m is the
greatest one.

Let us recall that a prime ideal P is characterized by the properties:

(x) #,yeP=>x \ yeP,

(y) 2Vy =y,yeP=>zel,

(z) A{xz;;iek}eP = there is iek such that x;eP, where k is a positive
integer.

We define for a, aed:

0 if a =a,
B, = e

m if & # a.

We may suppose, by the Remark, that, for each a4, the mapping
E; is defined for each aeB and it is an algebraic function in #.

(*) For the definition of a normal subdirect power, see [2], p. 150.
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The following relations (a), (b) and (¢) are evidently algebraic iden-
tities of «7:

(@) a = A(aV Ep),

aed
(b) 0 = A Eg,
aed
(c) for each a,beA ]
E, ifa=0,
E.N B, = :
m if a #Db.

Therefore, by (B), they are also algebraic identities of 4.

There is an element be A such that either E;¢(E]] or El¢(E;]; other-
wise E, = K], for each acA and & = 7, by (a). (The symbol (E] denotes
the principal ideal {x; * V E = E}.) Suppose the first case is true (the
second would be treated analogically). By the theorem of Birkhoff and
Stone [2], there is a prime ideal P of {(B; VV, A)> such that

(3) Ele(E]] < P and

(4) Ei¢P.

Let ¢: B—> A be a mapping such that

(B) ae = a<>FE eP.

It is easy to see that

1) ¢ 1is well-defined (if ae = a and ae = ¢, @ # ¢, then, by (¢), (5) and
(x), m = E; \V E;eP, which is not possible, in view of (4) and (y)),

2) & 1s defined for each ae B (see (b), (y), (3) and (z)),

3) &e # ne (see (3), (4) and (5)),

4) ae = a for ae A (because E% = 0¢P),

5) & is a homomorphism.

Let a k-ary opération feF and elements a,,...,a,eB be given.
The relation

FCum) (\'; B = \'; P
/(aye A a;8 AL
is fulfilled for any fB,, ..., f,¢A. (Both sides equal 0 or m according to
whether f; = ;¢ for all ¢ or not for all 4.)

Therefore this relation is an identity of ./ and, by (B), of # as well.
If B; = a; for each ¢ =1, ..., k, then the element on the right-hand side
belongs to P (by (5) and (x)); hence the element Ejii, % , belongs
to P. By (5) we get

flag, ...y ;)¢ =f(a1£, ceey @iE).

Thus the proof of the lemma is finished.
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Now it is easy to prove the theorem of Gould and Gritzer. Let
{e;;teI} be the set of all endomorphisms ¢,: # - & fulfilling condi-
tion (1) and let the mapping ¢: B — A be defined by

xp = {we;}; ;e AT for each zeB.

Evidently, ¢ is a homomorphism and, by the Lemma, it is injective.
Therefore ¢ is an isomorphism. Condition (1) implies that # is a subdirect
power of /. As we have already said, we will not prove the normality

of this representation.
I wish to thank Professor J. Novak for his suggestions concerning

the organization of the paper.
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