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Marczewski in [8] introduced the notion of an «/-hull of a set X < 8§,
where & is an arbitrary field of subsets of 8. By modification of Prikry’s
proofs and definitions in [3] we obtain*, with the help of an «/-hull,
a strengthening and a common generalization of all main theorems of papers
[2], [3], [6]), and [6]. We deal with theorems on the existence of a parti-
tion of a set X into sets as “large” as X, e.g. in a sense of measure or
category. For understanding the proofs of Theorems 2 and 3 the reader
is not expected to be familiar with any of the papers quoted in the Refer-
ences. For understanding the proof of Theorem 1 the knowledge of [3]
is sufficient.

0. Terminology and notation. Let |X| denote the -cardinality of
a set X. In the sequel, lower case Greek letters denote ordinals with x»
and A always standing for infinite cardinals, and J for any (finite or infi-
nite) cardinal. By cf(x) we denote the cofinality of », and by »* the cardinal
successor of ». An ordinal a is considered to be the set of all ordinals smaller
than a. The set of natural numbers is denoted by w, and o, = o*, v, = of.
A cardinal » is called regular if cf(x) = x, otherwise it is called singular.
A cardinal » > w i8 called weakly inaccessidle if it is both regular and limit.
#(X) denotes the power set of X, and

[[X]<* = {Y < X: |¥|< &}.

A field of subsets of a set S8 will be called, shortly, a field on 8.
Similarly, if # is an ideal in the field #(8), then 4 will be called an ideal
on 8. For an ideal 4 we always assume that @ € #. We say that an ideal
S on 8 is non-trivial if 8 ¢ # and [§]<® < S. A family # < £(8) is x-com-
plete if for every family 2 = £ such that |2| < » we have | J 2 e Z.

* The results of this paper were presented at the 5th Winter School on Abstract
Analysis at Stefanova in Czechoslovakia in February of 1977.
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Let # be an ideal on S. We say that subsets X, ¥ of S are f-almost
digjoint if XNY esS. A family # < #(8) is called S-almost disjoint if
any two different sets in # are f-almost disjoint. An indexed family
{X;: £e 0} is called S-almost disjoint if X,nX,K6 e S for every &,ned
such that & # #. It should be noted that we do not require that X, # X,
for £ # 5. If # = {@B}, then instead of “#-almost disjoint” we say, shortly,
disjoint. If # is any subfamily of #(S8), then by Sat[#£|s] we denote the
smallest cardinal 6 such that every .#-almost disjoint family contained
in # — J is of cardinality less than é. If #/ = {0}, then instead of Sat[#|.s]
we write Sat [#]. If o is a field on 8, then by I(«) we denote the family
of all A e o such that X € o for every X < A. The almost disjoint
transversal hypothesis for »* is denoted by TH(»*). Let us recall that
TH(x*) follows from Godel’s axiom of constructibility (for more informa-
tion see [3]). OH denotes the continuum hypothesis, and GCH — the
generalized continuum hypothesis.

1. Theorems and corollaries. In this note we prove three theorems.
The proof of Theorem 1 will not be presented in details, since it is very
long and needs only a minor modification of Prikry’s proof of Theorem 1
in [3]. The proof can be completed with the help of our generalization
of an eventual hull (see Section 2). It will be clear from the proof of our
Theorem 2 how to modify Prikry’s proof of his Theorem 1 in [3] in order
to obtain our Theorem 1 (see also Added in proof). The proof :of Theo-
rems 2 and 3 is a moditfication of Prikry’s proof of his Theorem 2 in [3].
The main result of our note is Theorem 2.

THEOREM 1. Assume TH(w,). Let M be a family of w,-complete fields
on w, satisfying | M| < o, and such that [w,]°° < o and Sat[ o —I(A)]
< w, for every o € IMN. Then for every X < w, with X ¢ | ) {I(): o €M}
there ewists a disjoint family 2 = #(X)—\JM such that |2| = w,.

THEOREM 2. Let x be a cardinal, A a regular cardinal with » < A > w,,
and let M be a family of x-complete fields on S satisfying |M| < w and such
that Sat[ o —I(H)] < x for every o e M. Suppose that F < N {I(A):
o € M} 18 a (max (x, w,))-complete ideal on 8 such that Sat [P (X)—I()|Sf]
> A for every of eM and every X € P(8)—I(A). Then for every X < 8
there exists an F-almost disjoint family {X,: & e A} = #(X) satisfying the
following condition:
(*) Viée)V(LeMV(d4de o) [(X;—Aecl(A) > (X—4el(H)

THEOREM 3. Let A be & regular cardinal and let M be a family of fields
on 8 satisfying |M| < w and such that Sat[ o —I(H)] < o for every of e M.
Suppose that & < (\{I(A): o €M} i3 an ideal on S such that Sat[#(X) —
—I(A)|F]> A for every of e and every X e P(S)—I(of). Then for
every X < 8 there exvists an S-almost disjoint family {X,: & e A} < #(X)
satisfying condition (*) of Theorem 2.
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In [3] Prikry has proved Theorems 1 and 2 only in case X = 8,
» = w,; and with I consisting of w,-complete fields allowing complete
probabilities which vanish on all finite sets. Theorems 1 and 2 of our
note generalize Theorems 1 and 2 of [3]. To see this, use fact (a) from
this section and the Sublemma. Our generalization of Theorem 2 of [3]
may be motivated by the fact that it gives a strengthening and a common
generalization of known theorems for measures ([6] and [3]), for outer
measure [2] and for Baire category [5]. To see that the above-mentioned
classical results are a very weak consequence of our Theorem 2 we recall
the following facts:

(a) For every x»*-complete non-trivial # on x»*

Sat[Z(X)— f]1> x* for every X e P(x+)— ¢
(see [9]).
(b) If x is less than the first weakly inaccessible cardinal and
w, < A< %, then for every A-complete non-trivial ideal # on x

Sat[#(X)—F£]> 21 for every X e P (x)—F
(this is an easy consequence of (a)). From the result of Solovay in [7]

this holds if » is even larger.

(¢) Assume TH(x%*). Then for every x*-complete non-trivial ideal
F on xt

Sat[?(X)— 4 | [x* 11> »*+  for every X e P(xt)—g
(since TH(x") is equivalent to the existence of a Kurepa matrix for »*;
see [3]). .
(d) Assume TH(w,), GOH, and suppose that there is no two-valued
measurable cardinal (e.g., the assumption is satisfied if we assume Godel’s

axiom of constructibility). Then for every w,-complete non-trivial ideal
Fgonx>ow, ’

Sat[Z(X)— F|SF]> w, for every X e P (x)—F

(see [3a]).
(e) Assume CH and suppose that there is no two-valued measurable
cardinal. Then for every w,-complete non-trivial ideal # on » > w,

Sat [Z#(X)—F]> w, for every X e P (x)— F

(see, e.g., [1]).
A very weak consequence of Theorem 2, the Sublemma, and fact
(b) is the following

COROLLARY 1. Assume that 2° i8 less than the first weakly inaccessible
cardinal. Then for every subset X of the real line there exists a disjoint family
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{X: &€ w} © #(X) such that, for every & € w, and every Borel set B > X,,
X — B i8 of first category and of Lebesgue measure 0.

Corollary 1 is a strengthening and a common generalization of theo-
rems of papers [6] and [6]. A more interesting application of Theorem 2
and fact (b) is that for a countable family consisting of arbitrary finite
complete measures vanishing on all finite sets and of topologies satisfying
the second axiom of countability and without isolated points. (The case
of measures which are not complete can easily be reduced to the case of
complete measures; see Corollary 3 in Section 4.)

Another weak consequence of Theorem 2, the Sublemma, and fact
(b) is the result of Popruzenko in [2]. This result can also be obtained
more directly from Section 2 of [3].

It should be noted that if we assume that each set of cardinality less
than 2° is of Lebesgue measure 0 and of first category, then even stronger
result than Corollary 1 can easily be proved directly in Zermelo-Fraenkel
set theory with the axiom of choice.

2. An eventual hull of a family of sets with respect to a field of sets.
The main tool in Prikry’s proofs in [3] is the notion of an eventual hull
of a family of sets with respect to a measure, introduced on p. 43 in [3].
We slightly generalize this notion by considering an eventual hull with
respect to a x-complete field o of sets such that Sat[& —I()]< «.
It is also possible to generalize this notion to an eventual hull with respect
to a x-complete ideal # in & such that Sat[ & —S] < «.

Let o/ be afield on 8. If X, Y = 8, then we write X CYif X—-Y
€I(«), and we write X = Y if X €Y and Y € X. It is clear that the
relations € and = depend on &.If X, A < §, then we write A € O[ &](X)
whenever X € A, A € &/ and, for every B e & such that X € B, we
have A € B. Any A € O[ «](X) will be called an &-hull of X. If o is
fixed, then instead of O[ «](X) we write O(X). Observe that for every
A,BeO(X) and every C = § such that C = A we have A =B and
C e 0(X).

We omit an easy proof of the following well-known lemma (see,
e.g., [8]):

LEMMA 0. Let of be a x-complete field on S such that

Sat[ o —I( )] < x.

Then for every X < 8 there exists an f-hull of X.

Let o be as in the assumption of Lemma 0. Let £ < #(8), |Z| = A,
and let # = {#,: £ €} be a one-to-one enumeration of #. For every
o € A put

d,={dest: SVT)[F < B—{R: Ecg} and |#| < x and
((.97' CR—{R: Eeg}and |[T|<x) >4 eO[U.Sf’Uﬂ'])]}.
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LEMMA 1. Let of and % be as above. Then

(i) A = B for every oA and all A,Be «,.

(i) o, #O for every o€ a.

(iii) If oep €A, then B € A for every A € o4, and every B € A ,.

(iv) If cf(A) > x, then there exists a o € A such that o/, = o, for all
¢ = e

Proof. The proof of (ii) is based on the following observation. Let
& be a x-complete field on 8, let # be a subfamily of #(8) such that
|#| < x, and let Ay € O[ L](F) for every F € #. Then

U{dp: FeFteo[HI1(UF).

We omit easy proofs of (i), (iii) and (iv).

If o and # are as in Lemma 1 and if 4 € &/,, where g is as in Lem-
ma 1 (iv), then A is called an eventual /-hull of the family #, and we put

O[ANR) = A,.
If X <8 and &, # are as above, then we put
O[H](2|X) = O[H](ZNX).

It is easy to see that for regular 4 the collection of eventual «/-hulls
of # does not depend on the choice of the enumeration of # in the pro-
cedure above. (The last assertion is not essential for our purposes; cf.

[3], p. 44.)
The following two observations are useful in reducing the proofs of

Theorems 2 and 3 (and a few lemmas which Prikry uses in his proof of
Theorem 2 of [3]) to the case X = 8.

LEMMA 2. Let o be a x-complete field on 8 such that
Sat[o# —I(H)]<x and Sat[P(X)—I(H)]> %
for every X < 8 with X ¢ I(sf). Then
I(ANX) =I(A)NX for every X = 8.

First we prove the following

SUBLEMMA. Let # be a field on X. Let S be an ideal on X such that
S<B Sat[B—-SF]< % and Sat[P(Y)—SF]>x for every YeRB—S.
Then S = I1(A).

Proof. It is evident that # < I(4). To prove the inclusion I(#) < S
suppose, on the contrary, that there exists a Y,eI(#)—S. Since
Y, e #—F, we have Sat[Z(Y,)—SF]> «».

Since Y, € I(#), we have #(¥,)—~S < # — ., and hence

Sat [P (To) — F1< %,

which is a contradiction.
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Proof of Lemma 2. Fix any X < §. We must prove that I (s« NX)
= I(«#)NX. In the Sublemma put # = NX and S =I(H)NZX.
It is easy to check that the assumption of the Sublemma is satisfied for
our # and 4, and so the conclusion holds.

LEMMA 3. Let o be a x-complete field on S such that
Sat[of —I(H)]<x and Sat[P(X)—I(H)]> =
for every X ¢ I(s#). Let Y <« X < 8 be such that X e O[ /N X](Y). Then
O[#]1(X) = O[#1(Y).

Proof. By Lemma 0 there exists an 4 € O[ #](Y). To prove that
A e O[H])(X), it is enough to show that X — 4 e I(«) because Y < X.
Since Y —A4 € I(«f), we have

Y-AnX el(¥nX).
Hence
X—AnXelI(4nX)

because X € O[ # N X](Y). Consequently, by Lemma 2,
X—AnXelI(Lg)NnX,
and so X —A4 e I(«), which completes the proof of the lemma.

3. Proof of Theorems 2 and 3. First we prove some lemmas.

LEMMA 4. Let x and A be cardinals such that A= x and A is regular.
Let # be a x-complete field on X and # a x-complete ideal on X such that

F<I(B), Satfa—-I(@)1<x, and Sat|[P(B)—I1(%®)|F]> 4

Jor every B e B—1(#). Then for every B e B —1(B) there exist By < B
with Bye B—1(#B) and a F-almost disjoint family {X,: &e A} < P(B,)
such that B, € O[B](X,) for every & e A.

Proof. Fix Be #—I1(#). Let Z <« #(B)— # be a #-almost disjoint
family such that |%Z| = 1. Put B, € O[#](Z&). Since £ < #(B) and B € %,
we can find such a B, which satisfies additionally the inclusion B, < B,
By the definition of an eventual #-hull and the fact that A is regular it
is easy to find a disjoint family {¥,: & € A} = #(R) such that |F| < »
and B, € O[#](UZ;) for every & e A. Put X, = (&N B, for every & e A

LeMMA 5. Under the assumptions as in Lemma 4 there exists a disjoint
family # < # such that |Z| < %, \ J® = X and for every B e %

(x%) there exists a F-almost disjoint family {XP: &e A} < #(B) such
that B € O[#B])(XF) for every £ e A.

Proof. Consider the set

{2: 2< #—1(®), 2 is a disjoint family, every B € 2 has property (**)}
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partially ordered by inclusion. Observe that this set is non-empty, since
it contains the empty family. By the Kuratowski-Zorn lemma, in that
get there exists a maximal element 2,. Since Sat [# —I(®#)] < %, |2,] < .
Hence X —|J 2, € 4. Since 2, is maximal, we have X —( J2,€ I(#) by
Lemma 4. Adding the set {X —(J2,} to the family 2, we obtain a new
family, say 2. It is clear that such a family # is what we need.

LEMMA (6. Under the 'assumptions as in Lemma 4 there exists a
F-almost disjoint family {X,: & e A} = P(X) such that X € O[B](X,) for
every £el.

Proof. Let # and {XF: ¢ e A} for every B € # be as in Lemma b.
For every & el put

X, = U{XE: Bea}.

For any x-complete field # the union of %-hulls of all sets from
a family of cardinality less than x is a #-hull of the union of all sets from
this family. Therefore, B € O[#]1(X¥) for every B e # implies

\U{B: Be%} cO0[#](U{XP: Bea)

and hence X € O[#](X;) because | J{B: Be #} = X.

LEMMA 6*. Let x and 1 be cardinals such that A > x and A is regular.
Let of be a x-complete field on 8 and S a x-complete ideal on 8 with the
properties: S <I(A), Sat[ o —I(H)]< % and Sat[P(X)—I(H)|SF]> 2
for every X e #(8)—I(). Let X € #(S). Then there exists an S-almost
disjoint family {X,: & e A} <« #(X) such that O[ L)(X) = O[ AL](X,) for
every £e€.

Proof. Let X € #(8). In Lemma 6 put # = 4NX and # =s5nNX.
It is easy to check that in this case the assumptions of Lemma 6 are
satisfied (to do this use Lemma 2), and hence also the conclusion holds.
Hence there exists a #-almost disjoint family {X,: § e i} < #(X) such
that X € O[ N X](X,) for every & € A. Thus, by Lemma 3, the sets X,
£ € 4, have the required properties.

¢ The next Lemmas 7 and 8 as well as the end of the proof of Theo-
rems 2 and 3 are ‘almost rewritten proofs of Lemmas 2 and 3 on p. 55 in
Prikry’s paper [3]. For reader’s convenience we give complete proofs of
Lemmas 7 and 8.

LeEMMA 7. Let the assumptions of Theorem 2 be satisfied. Let o/, € M
and let X < 8 be such that 8 € O[ #](X) for every o € M. Then there exists
a Y < X such that 8 € O[ A,](Y) and 8 € O[ A (X —X) for every o e M.

Proof. By Lemma 6* there exists an #-almost disjoint family {X,:
£ € A} « #(X) such that O[«/,](X) = O[«,](X,) for every & € A. We claim
that there is a & € A such that 8 € O[ #1(X — X,) for every </ € IR. Suppose
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that this is not so. Then we can find Z < A with |Z| = 4 and «/, € M such
that 8 ¢ O[ «,](X — X;) for every & € Z. Hence for all £ € Z we can choose
A; < X,U(8—X) such that 4, € o/, —I (o). Since Sat[ o/, —I(,)] < %,
A > x, there are & # n such that A,nA4,e o, —I(«,). Since

AnA, < (B—X)U(X,nX,), XnX,esfc (),
and
AeﬁA,,E dl—I(dl),

we have S ¢ O[ «/,](X). So we have a contradiction. Hence we can set
Y = X, for some §&.

LEMMA 7. Under the assumptions as in Theorem 3 the conclusion of
Lemma 7 holds.

The proof is similar to that of Lemma 7 and we omit it.

LeMMA 8. Under the assumptions as in Theorem 2 or im Theorem 3
there exist pairwise disjoint sets X (), o €M, such that 8 e O[](X())
for every o eIN.

Proof. Let M = {4,: n € 6}, 6 < w, be an enumeration of Ii. Choose
sets X, = § (n € ) by induction as follows. Let

X, = 8-UX: m<mn}, SeO[l«,1(X,),
and
8eO0[HIB—U{X,: m<n}) forall o eM.

This can be done by Lemmas 7 and 7.

Proof of Theorems 2 and 3. It can easily be seen that the conclu-
sion of the theorems is equivalent to the following:

For every X < 8 there exists an S-almost disjoint family {X,: £ e A}
< #(X) such that

(*%x) for every & € A and every o €I we have

O[H1(X) = O[ H](X3).

Using Lemmas 2 and 3 we can reduce the proof of the theorems to
the case X = §. Let then X = 8. We have to show that there is an #-almost
disjoint family {X,: § € A} = #(8) such that for every & e A and every
o el we have S e O[H](X,). Let X (&), for o €M, be such that
8 e O[#](X(&#)) for every o eM. By Lemma 8 such a family exists.
Let, for every of eM, {X.(H): &€ 4} be an S-almost disjoint family of
subsets of X (.f) such that

O[#](X()) = O[«](X,(#)) for every &eA.
Such a family exists by Lemma 6*. We now set
X, = UX(H): LM} (Eei).
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Then X, (& €1) are as desired. This completes the proof of Theo-
rems 2 and 3.

4. Remarks. We begin with the terminology as in [3]. We claim
that Corollary 2 in [3], p. 56, is not true even if we consider only M = {u},
where u is a two-valued meastre. More precisely, we can show that the
last sentence in Corollary 2 in [3] is not true. To see this let x = X,V X,,
XonX, =0, |X,| > wgy and |X,| = »,. Put

S ={4dcx: |[AnX,| < w}.
Let u be the measure on the o-field
SB(u) ={Y<x: YeS or x—Y €S}

such that 4(Y) = 0 and u(x—Y) = 1 for every Y € #. We have » > w,,
but, evidently, there is no disjoint family {T,: ¢ € w,} such that u*(T;) =1
for every & € w,.

It should be noted that Corollary 2 in [3] is true and correctly proved
if we assume additionally that all measures in M are w,-additive.

In connection with Corollary 2 let us formulate the following

PROBLEM. Let 4 be an w,-complete ideal on w, such that [w,]<*2 < S
and o, ¢ S. Is it true that there exists a pairwise disjoint family
Z < P(w,) —F such that |Z| = 0,? (P 1133)

Now we use our terminology.

There are many open problems in [3] for measures. It is clear how to
reformulate them for x-complete fields o such that Sat[ o —I( )] < .

We do not know an asnwer to the following

PrOBLEM. Can one replace w; by »* in Theorem 1% (P 1134)

Our last remarks are connected with those of Rao in [4]. In [4] Rao
wrote that he did not know .of probability spaces with some property.
The following corollary shows that it is possible to prove in ZFC 4 CH
that there are no such spaces.

COROLLARY 2. Assume that for every mon-trivial w,-complete ideal S
on 2% we have Sat [#(2%) —S] > w, (e.g., by fact (b) of Section 1 the assump-
tion is satisfied if we assume CH). Let {8, o, u;> (1 € w) be a family of
non-atomic probability spaces. Let, for every i € w, u; be the ouler measure
induced by p;. Then for every X < 8 there exists a disjoint family {X,:
& e w,} = #(X) such that for each it € w and each & € w, we have

ui (X,) = ui(X).

For the proof we need the following lemma (cf. [9]):
LeEMMA 9. Let the assumption about 2° as in Corollary 2 be satisfied.
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Let {8, o, u> be a non-atomic complete probability space and let
I(p) = {X < 8: p(X) = 0}.

Then Sat[#(X)—I(u)] > o, for every X € P(8)—1(u).

Proof. Let X € #(8)—I(u) and let »(B) = u*(B)/u*(X) for every
Be anX. It is easy to see that the probability space (X, #NX,»)
is also non-atomie. So we can assume, without loss of generality, that
X = 8. Since u is non-atomic, there exists a disjoint family

{Ye: £€2% < I(p)
such that (J{Y,: ée2”} = 8. Put
S ={Z<c2°: Y £cZ}el(n).
Olearly, # is a non-trivial w,-complete ideal on 2®. Hence there
exigts a disjoint family
{Z;: (e w,} =« P(2°)—7.
Oonsequently, | J{Y,: &£e€Z,;} ¢ I(u) for every £ € w, which implies
Sat [Z(8)—I(u)] > w,.

Proof of Corollary 2. We can assume, without loss of generality,
that all measures y; (¢ € w) are complete and non-atomie. By the Sublem-
ma and by Lemma 9 we infer that, for every tew, I(of;) = {¥ < 8:
#(Y) = 0} and Sat [#(X)—I(;)] > w, for every X < 8 with X ¢ I(«,).
So for M = {;: i € w} the assumption of Theorem 2 is satisfied. Let
{X;: £ew,} be as in Theorem 2. It is clear that the sets X,, &€ w,,

have the required properties.

It should be noted that Corollary 2 can also be obtained from the
proof of Prikry’s Theorem 2 in [3], p. b4.

Observe that if there exists a real-valued measurable cardinal
%z < 27, then, evidently, the conclusion of Corollary 2 does not hold.

By Theorem 2, fact (e) from Section 1 and by the Sublemma we
have the following

CoROLLARY 3. Suppose that CH holds and that there is no two-valued
measurable cardinal. Let {8, o, u;> (1 € ) be a family of probability
spaces such that, for every i € w, [8]<® < o, and p,(X) = 0 forall X e [8]<".
Let (8,7 (i € w) be a family of T,-topologies on 8 satisfying the second
axiom of countability and without isolated points. Then for every X < 8
there is a disjoint family {X,: & € w,} < P(X) such that for each ie w
and each & € w, we have

.": (Xe) = l‘: (X)
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and, for every Borel set B, if X,— B is of first category, then so i8 X — B
(we understand Borel and category with respect to the topology I ).

Note that Corollary 3 generalizes Corollary 1 of [3].

Replace the first sentence in Corollary 3 by “Suppose that |S| is
less than the first weakly inaccessible cardinal”. Then so changed Corol-
lary 3 is still true (use fact (b) from Section 1).

Acknowledgement. I am grateful to Anzelm Iwanik for his kind
help in preparation of this paper.

Added in proof (December 5, 1977). Recently, in a preprint On sat-
urated sets of ideals and Ulam’s problem Alan D. Taylor has obtained
among others the following strengthening of Theorem 1:

THEOREM (Taylor). Assume that for every non-irivial w,-complete ideal
S on w, we have

Sat[2(w,) — £ |[0,]°"1] > w,

(this holds if we assume, e.g., TH, ). Let MM be a family of w,-complete
fields on w, satisfying |M| < w, and such that

[0 < o, o #P(o) and Sat|sf—I(H)|[w;]°*]< w,
for every of € M. Then
Sat[P(w,) — U M|[w,]°"1] > w,.

Also recently we have proved that in Taylor’s theorem one can remove
the assumption “Sat[of —I()|[w,]“1] < wy”.

To prove this result we use a general lemma which claims that, in
many cases, theorems for families of ideals, related to Ulam’s problem
on families of measures, are also true for families of arbitrary non-trivial
tields of sets (the paper in preparation to Fundamenta Mathematicae).
Then we use a particular case of Taylor’s theorem.
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