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1. Introduction. The graphs under consideration here are simple graphs,
i.e. finite undirected graphs with neither loops nor multiple lines. The point
set of a graph G is denoted by V(G), while the line set is denoted by E(G).
We denote by 4(G) and 4(G) the minimum degree and the maximum degree
of a graph G, respectively. The subgraph induced by a set U of points of G,
denoted by (U)», has U as its point set and contains all those lines of G
which are incident to two points of U. In [10], a graph G was defined to be
k-degenerate for a nonnegative integer k if 6(H) < k for each induced
subgraph H of G. It is clear that a graph is totally disconnected if and only if
it is O-degenerate. Forests (or acyclic graphs) are precisely the 1-degenerate
graphs. According to [11], the point partition number g, (G) of a graph G, for
a given nonnegative integer k, is the smallest number of sets into which the
point set V(G) can be partitioned so that each set induces a k-degenerate
subgraph of G. It is easy to see that the parameters g,(G) and g, (G) are the
chromatic number and the point arboricity of a graph G, respectively. A graph
G is said to be p-critical with respect to g, if g,(G) = p, but g,(G—v) = p—1
for each point v of G. The definitions not given here may be found in [6].

2. The point partition number. Lick [11] has proved the following

ProrosiTION 1. If a graph G is p-critical with respect to g,, where k is
a nonnegative integer, then

0(G) = (k+1)(p—1).

For any real number r, we use the symbols [r] and {r} to denote the
greatest integer not exceeding r and the least integer not less than r,
respectively.

THEOREM 1. Let f be a real-valued function on graphs with the properties

(a) f(H) <f(G) for each subgraph H of G,

(b) f(G) = 6(G) for each graph G.
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Then

f(G)
% (G) < I:m:,+1-

Proof. Let g,(G) = p+1 and let H be a subgraph of G, (p+ 1)-critical
with respect to g,. Proposition 1 implies 6 (H) = (k+ 1) p, and (a) yields that
f(H) <f(G). Thus, by (b), we have

p(k+1) < 6(H) < f(H) <f(G).

G
(G)=p+1< B{%J+l.

For k = 0 this theorem gives the result of Szekeres and Wilf [16].

Let G be an m-degenerate graph and m > k > 0. Denote by M, (G) the
maximum number of points of G which induce a k-degenerate subgraph of G.
Let T,(G) denote the minimal cardinality of a set T< V(G) such that for
every non-k-degenerate subgraph H of G we have V(H)NT# Q.

It is easy to see that My(G) and T,(G) are the point independence
number and the point covering number of G, respectively. If a graph G is
k-degenerate, then every subgraph of G is k-degenerate. Hence this property
is hereditary. By the theorem of Hedetniemi [7] we obtain a generalization
of the theorem of Gallai [4]:

THEOREM 2. For an m-degenerate (m > k > 0) graph G,
M, (G) + T (G) = [V(G)|.
THEOREM 3. For an m-degenerate (m > k > 0) graph G,
0(G) < T, (G)+k.

Hence

Proof. Let N < V(G) be a set such that for every non-k-degenerate
subgraph H of G we have V(H)n N # @ and |N| = T, (G).

Let G' =<(V(G)\N) and assume that 6(G’) =d; (v'), v e V(G)\N.
Obviously, G’ is k-degenerate. Hence and from the definition of the
k-degenerate graphs we obtain dg;. (v') < k. Thus |

(%) dg (v) < k+|N| = k+ T, (G).
Since 6(G) < dg(v'), by (*) the theorem is proved.

CoroLLARY 1 ([9], Proposition 7). Let G be an m-degenerate (m > k > 0)
graph with n points. Then

n n—M,(G)]| .
{M,(G)} < o (G) <{———k+l }+1.
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Proof. The lower bound is obvious.

By Theorem 3 and the definition of T,(G) it is easy to see that the
function f(G) = T,(G)+k satisfies the conditions (a) and (b) of Theorem 1.
Thus

T, (G)+k
(%) o (G) < [_k-l-—i_:'+ 1

and, by Theorem 2, (%), and elementary calculations, we obtain the upper
bound.

Now, we review some functions which satisfy the conditions (a) and (b)
of Theorem 1.

(i) The minimum number of lines in any cutset of the connected graph
G is called the line-connectivity of G and is denoted by /(G).

In [12] Matula defined the strength s(G) of a graph G as follows:

s(G) = max {I{(H): H is a subgraph of G}.

It is obvious that s(G) satisfies the conditions (a) and (b).

(ii) (See [16].) For a graph G of order n, let N(G) denote the nxn
adjacency matrix of G. Let 4 = A(G) be the largest eigenvalue of N(G).

(iii) 4(G) = max d(v).

veV(G)

(iv) (See [17]) If (G) = {v,, v,, ..., v,} and d(v,) = d(vy) = ... = d(v,),

then we put
g9(G) = max min |i,d(v,)+1}.
1<i<n

Of course, the functions A(G), 4(G), and g(G) satisfy the conditions (a)
and (b), and g(G) < 4(G) (see, e.g, [13]). From Theorem 1 and (i}{(iv) we
obtain the four upper bounds for g,(G).

The bound for chromatic number (i, for k = 0) given in the term of
A(G) was proved by Wilf in [18]. Moreover, Szekeres and Wilf in [16]
proved that the smallest function f which satisfies the conditions (a) and (b)
of Theorem 1 is

f(G) = max min dg (v).
G'<G veV(G')

LemMA 1. For a k-degenerate graph G,
- (G <r+1 for 0<r<k.

Proof. Obviously, for r = 0 the lemma is true.
Let k>r>1 and suppose that there exists a graph G such that
0x-,(G) > r+1. Therefore, Theorem 1 and (i) imply
s(G)
k—r+1°

r+1 <o, (G)<1+
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Since s(G) < k, we have r(k—r+1) <k, and by elementary calculations we
obtain (k—r)(r—1) < 0, in contradiction with the nonnegativity of values of
both factors.

THEOREM 4. If 0,(G) =t, then g,_,(G) < t(r+1), k=r=0.

Proof. Since ¢,(G) =t, we have the partition V(G)= V,u ... UV,
where each V; induces a k-degenerate subgraph. The application of Lemma 1
to each (V) completes the proof.

COROLLARY 2. We have (r+1)"!g,_,(G) < 0,(G).

3. Some generalizations of Nordhaus-Gaddum type theorems. In [14]
Nordhaus and Gaddum showed that for any graph G of order n the
following inequalities hold:

) 12./n) < 00(G)+00(G) < n+1,
. - 1\?
(i) 1< 00(G)2o(G) < [(1’—’2’—) J

Furthermore, these bounds are the best possible for infinitely many values of
n. Finck [3] characterized all graphs G such that equality holds in any of the
four inequalities given in (i) and (ii).

The determination of upper and lower bounds (preferably sharp bounds)
for f(G)+f(G) and f(G) f(G), where G is a graph of order n, is called
a Nordhaus—Gaddum problem for a given graph-theoretic parameter f and
a positive integer n. .

A survey of some results of this type is given in [1]. There are several
variations and generalizations of this problem: For example, one might
consider distinct but related parameters f; and f, and develop bounds for
J1(G)+/2(G) and f,(G) £>(G).

In 1969, Gupta [5] considered the problems of this type for the
chromatic, achromatic, and pseudochromatic numbers. Analogous results for
hypergraphs are obtained in [13] and [8].

In addition, for a parameter f and graphs G, and G, related in some
prescribed manner, the problem exists to investigate bounds for f(G,)+f(G,)
and f(G,) f(G,).

In 1964 Dirac [2] considered a problem of this type for the chromatic
number, and in 1974 Schiirger [15] considered such problems for the
chromatic number and the point independence number.

In the sequel we consider theorems of the last type for graphs where we
take M, (G) as the parameter f and the point partition number g, (G).

In this part of the paper we consider the graphs G and H on the same
‘set of points, ie, V(G)=V(H)=V. By the union G U H of such graphs
we mean the graph which has the point set V(G)u V(H) = V and the line
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set E(G)UE(H). Similarly, G =GnH has V(G)=WV(G) nV(H)=V and
E(G’) = E(G)n E(H).

We begin with the following

LEMMA 2. 0, (G U H) < (k+1) 0, (G) ok (H).

Proof. First, let ¢,(G) =t and g, (H) =s. Then we have a partition
V=Vu ... UV, where each (V) is k-degenerate in G. According to Lemma
1, for r = k there exists a partition

V;=VMU UVk"'l’ i=l,...,t,

where each set V,; is independent.

Now, let V be partitioned into s sets (ie, V= U,; u ... uU,) such that
each (U;) is k-degenerate in H. It is easy to see that each set ¥V, nU;
induces a k-degenerate subgraph of Gu H. Thus ¢,(G U H) < (k+1)ts, and
the lemma is proved.

THEOREM 5. M, (G)+ M, (H) < |V|+(k+1) M,(G U H).
Proof. Let A, B c V be the sets which induce k-degenerate subgraphs
in G and H, respectively, and let |4| = M, (G) and |B| = M, (H). Now we get

|A|+|B| =|AUB|+|AnB| <|V|+|ANB|.
From the left inequality of Corollary 1 we obtain
(a) M, (G)+ M, (H) < |V |+ e ({4 " B)) M\ ({4 N B)).
Since (AN B) is a subgraph of GuU H, we have
(b) M ({4 nBY) < M(GUH).
Obviously, 9,({A)) =g ({B)>) =1. Thus, by Lemma 2, we obtain
(© a((AnB)) < (4> u{B)) <k+1.

The theorem now follows from (a), (b), and (c).

COROLLARY 3. M,(G)+ M, (G) < |V|+(k+1)>.

Lick and White (see [1]) generalized the Nordhaus-Gaddum theorem by
proving the following

PrROPOSITION 2. For a nonnegative integer k and a graph G of order n,

NN IR S0 +a @) < AL

k+1 2k+2

In [14] Schiirger proved the following

ProrosiTioN 3. For any graphs G and H we have

(1) 20(G)+eo(H) <|V|+20(G N H),

(i) @o(G v H) < @0(G) g0 (H).

A generalization of Propositions 2 and 3 will be proved below.
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THEOREM 6. For a nonnegative integer k and graphs G, H of order n,

2k+2 ’

/00(GUH 1
ﬂ"z(f——) <Ve(Ga(H) < E(Qk(GH'Qk(H)) S

Proof. From Corollary 2 for r = k we obtain

20(G) < o(G) and

2o (H) < o (H).

k+1 k+1

Hence

1
(a) k1) 20(G) o (H) < 0, (G) ei (H).

(k+1

Thus, by Proposition 3 (i) and (a), we obtain the left inequality in the
statement of the theorem.

To show the right inequality, it is obviously sufficient to consider the
case where GUH is a complete graph.

Let V=V, u... UV, be a partition of V into nonempty sets ¥, being
independent in <E(GnH)> Obviously,

20 (CE(GNH))) =t = go(GNH).

Let E; and F; denote the sets of all lines of E(G)\E(H) and E(H)\E(G),
respectively, whose end-points belong to V, 1 <i<t. The graphs G; =
(V;, E}) and H; = (V,, F;) satisfy the condition G; = H; for i=1, ..., t. Thus
Proposition 2 gives

m+2k+1

(b) e (G)+ o (H) < Kt l

where n; = |V, 1 <i <t. Obviously,
t t
Z o%(G;) = &(G) and Z ox(H;) = o (H).
i=1 i=1

Consequently, by (b), we obtain

t
n+2k+1  n+t(2k+1)
a@+aH) < ¥ ="

and the theorem is proved.
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