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QUASI-REGULAR GENERALIZED CONVOLUTIONS
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1. Notation and preliminaries. Generalized convolutions were introduced
in [3]. Let us recall some definitions. We denote by B the set of all
probability measures defined on Borel subsets of the positive half-line R, .
The set P is endowed with the topology of weak convergence. For ue ‘B and
a> 0 we define the map T, by setting (T, u)(E) = u(a ' E) for all Borel
subsets E of R, . By 6, we denote the probability measure concentrated at
the point c. ‘

A continuous in each variable separately commutative and associative
B-valued binary operation o on P is called a generalized convolution if it is
distributive with respect to convex combinations and maps T, (a > 0) with ,
as the unit element. Moreover, the key axiom postulates the existence of
norming constants ¢, and a measure ye P different from d, such that

(L) T, 053" — v,

where 67" is the n-th power of ; under o. The set P with the operation o
and all operations of convex combinations is called a generalized convolution
algebra and denoted by (B, 0). A generalized convolution algebra is said to
be quasi-regular if the norming sequence c, in condition (1.1) tends to 0. This
concept was introduced by Kucharczak in [1].

For any pair u, ve B we denote by u []v the probability distribution of
max (X, Y) where the random variables X and Y are independent and have
the probability distributions u and v, respectively. It is clear that (B, [J) is a
generalized convolution algebra. Moreover,

(12) 5‘, D(S,, = 5max(a.b) (a, b€R+).

Using formula (1.2) one can easily show that (B, [J) is not quasi-regular. The
aim of this paper is to prove that (B, (J) is the only non-quasi-regular
generalized convolution algebra. The main results of this paper are based on
two techniques: one uses semigroup method, the other uses compactness
arguments for probability measures on the compactified half-line.
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2. Extended generalized convolution algebras. An extension of a general-
ized convolution to the space P of all probability measures on compactified
half-line R, = [0, c0] enables us to use compactness arguments, and there-
fore is a useful tool in the study of generalized convolutions. The space R is
compact in the topology of weak convergence of probability measures. We
identify the space B with the subspace of P consisting of measures with zero
mass at oo. Further, we introduce the notation P, = PB\P.

Each measure ue P has the unique representation

u=ay+(1—-a)é,, where pePpand 0<ax<l.
Given a generalized convolution algebra (*B, 0) we extend the operations o
and T, (c > 0) on P by setting
(2.1 (a' +(1—a)d,)o(bv'+(1—b)d,) = ab(u' ov)+(1 —ab)d
and
(2.2 T(a+(1—a)d,) =aT .y +(1 —a)d,,

where 0<a, b <1, 4, vVeP and ¢ > 0. The set P with the operations o and
convex combinations is called the extended generalized convolution algebra
and denoted by (B, 0). It is clear that the algebraic properties of (B, o) carry
over to (‘B, 0). Namely, o is a commutative semigroup operation on P
distributive with respect to convex combinations and maps T, (c > 0). The
measure J, is the unit element in P. Moreover, by (2.2), we have the
following simple statements:

ProposiTioN 2.1. If p,, pe B, p,— p, u({0}) = 0 and c, — o, then T, p,
—0q-

ProrosiTioN 2.2. If u,, pue P, py— u, p # 6o and c,— oo, then all limit
points of the sequence T, u, belong to P.

The continuity properties of © on P will be discussed later.
Let Y be a locally compact metric space and m a Borel probability
measure on Y. For any B-valued continuous function v(-) on Y the integral

p= !v(y)m(dy)

is taken in the weak sense, i.e.

nj S (x)pu(dx) = Iﬁj S (x)v(y)(dx) m(dy)
+ Y R,

for every continuous function f on R,. By N(4) we denote the support of
the measure 4. By the continuity of the function v(-) we have the following
useful remark:

ProPOSITION 2.3. ff u= [v(y)m(dy), then
Y

N(v(y)) =N for all ye N(m).
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The Laplace transform of ue B is defined by the formula
Az)= [ e **pu(dx) (0<z<o0).
R,

The following simple properties will be useful:

23) fi(c0) = u({0}),

(24) i(0+) = p(R,),

(2:5) (LW (2)=ji(cz) (c, ze(0, ),
(2.6) Mo — p yields fg, — ji

uniformly on every compact subset of (0, o). Conversely, if i, — ji pointwise
on (0, o0), then yu,— u.

LemMa 2.1. Ler v,(*) be a sequence of B-valued continuous functions on a
locally compact metric space Y with a Borel probability measure m. If

Jva(y) m(dy) — 3o,

Y
then there exists a subsequence ny <n, <... such that v, (y) =6, for m-
almost all y.

Proof. Put u, = |v,(y)m(dy). Then
Y

J () (2) m(dy) = fn(z) — 1.
Y

Since 0 < v, (y)(z) < 1, the last relation yields the convergence v,(y)(z) — 1 in
probability m. Thus for a fixed z,€(0, c0) we can find a subsequence n,
<n, <...such that v, (y)(zo) =1 for m-almost all y. But this is possible only if

Va, (¥) = 9o for m-almost all y, which completes the proof.

First we shall establish continuity properties of 8,08, (t, ue R,). Put
h(t, u, 2) =(6,08) (z) (z€(0, ), t, ueR,).
The function h has the following properties:

(2.7) O0<h(t,u,2z)<1,

(2.8) h(t,u, z) = h(u, t, z),

(29) h(at, au, z) = h(u, t,az) (a>0),
(2.10) h(t,0,z) =e"*,

(2.11) h(o0, u,z) =0.
Moreover, by (2.6),

(2.12) h(t,, u, z,) — h(t, u, z)

when t,—t, z,—z (t, u, z€(0, o0)).
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LemMma 2.2. For every ze(0, o) the function h(-, -, z) is continuous at
every point different from (oo, o0).

Proof. Let t,—t, u,—u and (¢, u) # (c0, ). By (2.8) without loss of
generality we may assume that t >u and t,2u, (n=1, 2, ..)).

First consider the case t = co. Then 0 < u < 0. Moreover, we may
assume that ¢, > 0. Setting v, =0 if t, = o0 and v, = u,/t, if t, < 00, we have
v, — 0 and, by (2.9) and (2.11),

h(t,, u,, z2) =0 if t,= o0
and
h(t,, u,, 2)=h(1,v,,1t,2) ift,<x.

Since the Laplace transform is monotone non-increasing and, for every
integer k, t,z>k for n large enough, we have the inequality
h(t,, u,, z) < h(1, v,, k) for n large enough. Thus, by (2.10) and (2.12), we
have the inequality

lim h(ty, u,, 2) <h(1,0, k) =e™* (k=1,2,..),

n—*aw

which, by (2.7) and (2.11), yields

lim h(t,, u,, z) = 0 = h(o0, u, z).

n—aw

This shows that h(-, -, z) is continuous at the points (0o, u) (0 < u < ).
Suppose now that ¢t 0. Then we have also u=0. Put v, =0 if r,=0

and v, = u,/t, if t, > 0. Given ¢ >0, we have 1,z <¢ for n large enough.

Consequently, by (2.7), (2.9) and (2.10), for n large enough we obtain

h(t,, uy, z) =12 h(1, v,,¢) if 1,=0
and
h(tn, un, z2) = h(1, v,, t,2) = h(1, v,, &) if t,> 0.
For a fixed z, taking a subsequence n, <n, <... such that

lim h(t,, , up,, z) = lim h(t,, u,, 2)

k— o n—wo

we may assume in addition that v, —v (0 <v<1). Thus

lim h(t,, Up, 5 Z) 2 h(1, v, ¢)

k—a

for every &£ > 0, which yields

lim h(t,, u,, z) = h(1, v, 0+).

n—ao



GENERALIZED CONVOLUTIONS 151

Taking into account (2.4) we conclude that
h(1,v,0+4+) = (6, 06,)(R,) =1,
which, by (2.7), implies
lim h(t,, u,, z) =1 =h(0, 0, z).

Consequently, the function h(-, -, z) is continuous at the point (0, 0).
It remains the case 0 <t < co. Of course, we may assume that 0 <t¢,
< oo. Setting v, = u,/t, we have, by (2.9) and (2.12),

h(tﬁ’ u'l’ z) = h(l, v’l’ tll’ z) - h(l, u/t’ z) = h(t’ u’ z)’

which completes the proof.

By relation (2.6) and Lemma 2.2 we infer that the B-valued function
6,00, ((t, e R, xR,) is continuous and, consequently, the integral

[ | 6,00,u(dt)v(du)

R, R,

exists for any pair u, ve B. It is easy to check the formula

(2.13) pov= [ [ 60d,u(d)v(du) (u, veDP).

Ry R,
Indeed, this formula is obvious if 4 and v are concentrated at a finite number
of points. Then we use the continuity of o in each variable separately. As a
consequence of definition (2.1) and formulas (2.11) and (2.13) we get the
following

CoOROLLARY 2.1. We have

uov) @ = [ [ h(t,u, 2)pu(d)v(dw) (u, veP).
R, R,
The continuity properties of o on P are described by the following
statement:

ProrosITION 2.4. The generalized convolution © is continuous in both
variables at all points (u, v)¢ P, x P..

Proof. If (4, v)¢ P x P, then the product measure u xv on R, xR,
has zero mass at the point (o0, 00). Suppose that u, — u and v, — v. Then, of
course, u, xv,— pu xv and, by Lemma 2.2 and inequality (2.7), we have the
relation

[ | h(t, u, 2) g, (dt) v,(du) —»Rj [ h(t, u, z) p(dt) v(du).

RiR, + Ry
In other words, by Corollary 2.1, (y,,ov,,)~—+(u ov)~ pointwise, which, by
(2.6), yields the continuity of o at the point (u, v). The proposition is thus
proved.
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From Proposition 2.4 it follows immediately

THEOREM 2.1. The operation © in a generalized convolution algebra (B, 0)
is continuous in both variables.

Now we shall discuss the continuity properties of o on B, x B,. The
following example shows that 0 may be not continuous in both variables on

Po x P

ExampLE. Consider the generalized convolution defined by the relation
éao‘sb =i(6|a—bl+5¢+b) (a’ bER-O-)

([3], p. 218). Put py =0, and pzyy =024+ (k=1,2,..). Then p,—d,
and 4, — d,. But

”2&0621( = i(6k+63k)9 Hak+1 052k+l = %(50+64k+2) (k = l’ 2, "')9

which shows that the sequence yu,04d, is not convergent and has two limit
points 8, and 4(6o+6,).
First we shall establish some lemmas.

LemMa 2.3. If u, ve P and pov = b, then p=v = d,.
Proof. By definition (2.1) we infer that u, ve . Applying formula (2.13)
we have '

| § 600, u(dt)v(du) = &,

R, R,
which, by Proposition 2.3, yields
N(6,04,) = {0} for (t, ue N(u) x N(v).

In other words, 8,08, = d, for (t, uye N(u) x N(v). If either u or v is not
concentrated at O, then 6,08, = d, for a certain pair a < b, b > 0. Further-
more, applying the map 7,-1 to the last equation and setting ¢ = a/b, we get
0, 00, = 8. Then 6.06,.2 = é,, which yields 6, =, 05,08.2 = §.2. Conse-
quently, c =1 and §, 06; = §,. Taking the norming sequence c, in (1.1) we
have
T.,, 012" — v # do.
On the other hand, 6;2" = §,, which yields a contradiction. The lemma is
thus proved.
CoROLLARY 2.2. We have

sup {(6.06,)({0}): 0<c <1} <1.
To prove this it is enough to show that

lim (8, 06,)({0}) <1

R—a®
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for any convergent sequence c, (0 < c, < 1). Suppose the contrary, ie,
lim (6.,,06,)({0}) = 1

for a certain sequence c, tending to ¢ (0 < ¢ < 1). Then (6,06,)({0}) =1 or,

equivalently, .06, = do, which contradicts Lemma 2.3.

LemMma 24. If g(2) = lim h(t, u, z), then
(t,4) —( o0, ®)

sup {g(z): ze(0, )} < 1.
Proof. Given z¢e(0, o0), we can choose a sequence (t,, u,) — (00, o)
such that
g(z) = lim h(t,, u,, 2).

Moreover, by (2.8), we may assume that O <u,<t, <0 (n=1,2,..).
Setting c, = u,/t, and passing to a subsequence if necessary, we may assume
without loss of generality that ¢, — ¢ (0 < ¢ < 1). Further, by (2.9), we have

h(t,, u,, 2) = h(1, c,, t,, 2).
For any integer k we have ¢,z > k if n is large enough. Consequently, the last
equation implies the inequality
h(ty, uy, z) < h(1, c,, k)
for sufficiently large n. Thus
g@)<h(l,c, k) (k=1,2,..),

which, by (2.3), yields g(z) < (6, 06,)({0}). Now our assertion is a direct
consequence of Corollary 2.2.

LemMa 2.5. If p,, v, B and p,— 6, v, — 8, then all limit points of
u,0ov, belong to P,.

Proof. The relations u,—d, and v, —d, imply the existence of a
sequence (t,, u,) — (00, oo) such that

([0, t,) -0 and  v,([0, u,]) 0.
Using Corollary 2.1 we have the inequality
([IHOV,,)-(Z) s #n([oa I,,])+V,,([O, un])+sup :h(t’ u, Z): t ? tns u 2 un} .

Thus
Eﬁ (H0v) () <g(®) (2€(0, )

and, consequently, for any limit point 4 of the sequence u, ov, the inequality
A(z) £9(2) (ze(0, o)) is true. Applying Lemma 2.4 we have the inequality
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A(R,) = 4(0+) < 1, which shows that i has a positive mass at oc. Thus
A€ B, which completes the proof.

PropoSITION 2.5. Suppose that pu,, v,e P, u, ve B, and p,— u, v, — v.
Then all limit points of p,ov, belong to P.

Proof. Suppose that
pu=apy'+(1—a)é,, v=bv+(1->)d,,

where u', v'e P and

(2.14) O0<a<l, 0<b<l.

Then the sequences u,, v, have a representation

Pn = Gppin+(1—a)py, vy =b,v,+(1-b,)v,,
where a, —a, b, — b, u,, v,e P, u, = ', v,— v, u, -84, and v, — . Since
Hn OV, = @y by pt, 0V, +(1—a,) b,y OV, +a,(1-b,) pp0v,
+(1—a,)(1=b,) u, ovy,

"

and, by Lemma 2.5, all limit points of u, ov, belong to B,, we conclude, by
virtue of (2.14), that all limit points of u,ov, have positive mass at oo. The
proposition is thus proved.

CoroLLARY 2.3. If u,, v,€ B, 1B and p,0v, — A, then all limit points of
the sequences u, and v,, respectively, belong to ‘P.

Proof. It is enough to show that each limit point of u, belongs to P.
Let u, — p. Passing to a subsequence if necessary we may assume without
loss of generality that the sequence v, is also convergent, say to v. By
Proposition 2.5, (u, v)¢ B, x P,. Consequently, by Proposition 2.4, the
operation O is continuous at the point (g, v). Thus pov = A, which, by
definition (2.1), shows that ue ‘. This completes the proof.

CoroLLARY 24. If u,, v,e B and p,ov,— 8, then u,— 8, and v, — 8.

Proof. Let p, — p. Passing to a subsequence if necessary, we may
assume that v, —v. By Corollary 2.3, u, ve P and, consequently, by Proposi-
tion 2.4, the operation o is continuous at the point (u, v). Thus pov = é,,
which, by Lemma 2.3, yields u = v = §,. This proves the relation y, — 8,. By
symmetry of our assumptions we have also v, — d,, which completes the
proof.

CoOROLLARY 2.5. If

nx
jSl 60,-'* - 50:

then

oo =max{u,: j=12,...,n}—0.
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Proof. Since

nx
he Ouj . = 00y O i

where g, €}, we have, by virtue of Corollary 24, d,, =90, Which implies
v, —0.

3. Monothetic generalized convolution semigroups. In this section we shall
prove that each norming sequence in (1.1) is convergent.

Given ue P, by H(u) we denote the closure in P of the set [u°": n

=1, 2, ...}. Further, by ®(u) we denote the set of all limit points in B of the
sequence u°". Obviously,

(3.1) S =6@uvipmn=12..}
and both sets $H(u) and ®(u) are compact.

LemMA 3.1. For every pe P the inclusion $H(u) N B, < {0,} is true.
Proof. Suppose that ve H(u) N B. Then, by (3.1), ve ®(u) and, conse-

quently, u°™ —v for a certain subsequence n, tending to co. Put
3.2) v=cv+(1—-¢)d,

where ve'R and 0<c < 1. Let r be an arbitrary positive integer. The
sequence m,—r (m > r) contains a subsequence m; such that p’™ is conver-
gent, say to v,, when j — co. Since m;+r is a subsequence of n,, we have the

relation

.4 .
*™* Ly  when j— x.

Consequently,

(3.3) urov,=v (r=1,2,..).

Put v, =c,v,+(1—¢,) 0., where v,e* and 0 <, < 1. From (3.2) and (3.3)
we obtain

(34 e,v,op” +(1—¢)d,=cvV+(1—-0d, ((r=1,2,..),

which yields ¢, =c (r =1, 2, ...). We have to prove that ¢ = 0. Suppose the
contrary. Then, by (34), v,ou® =v (r=1, 2,...) and, by Corollary 2.3, all
limit points of the sequence u° belong to B. But this contradicts the
assumption ve B,. Thus ¢ =0, which, by (3.2), shows that v=45,. This
completes the proof.

LeMMA 3.2. The set $(u) is a monothetic compact semigroup under the
operation O.

Proof. It is enough to prove that the set $H(u) is closed under the
operation O and the operation in question is continuous in both variables on

H(u). Let v, Ae $(u). Then p™™ —v and p°™ — A for some sequences of
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positive integers ny < n, <... and m; < m, <..., respectively. If (v, )
¢ R, xR,, then, by Proposition 2.4,
uo(nk+mk) -y O}.,

which yields voie $(u). In the case (v, ) e B, x P, we have, by Lemma 3.1,
v=A=40,, which yields voi =4, and, consequently, voie H(u). Thus
$(p) is closed under the operation o. To prove the continuity of o in both
variables on $(u) it suffices, by Proposition 24 and Lemma 3.1, to prove it
at the point (6, 6,) provided é,€ H(u). Suppose that v,, 4, H(u) and v,
— 04, 4y — 0,. Then, by Proposition 2.5, all limit points of v,04, belong to
9(u) N B, and, consequently, by Lemma 3.1, are equal to é,, which
completes the proof.

Applying the Numakura Theorem ([2], p. 109) we get the following
statement:

CoRrOLLARY 3.1. The set ®&(u) is a compact group under the operation o
and a minimal ideal of $(n). Moreover, $(u) contains exactly one idempotent,
namely the unit of ®&(u). .

Since é, is an idempotent, we conclude, by virtue of Lemma 3.1, that
G(u) = {0, if G(u)N Py # O. This yields '

CoROLLARY 3.2. For every ue® we have either G(u)= 0,) or
G(p) < P.

Suppose we have a norming sequence c, of positive numbers such that

(3.5) L. 1" — e,

where ¢ # J, and ge B. Denote by C the set of all its limit points in R, . Of
course, C is compact.

LeEmMMA 3.3. The set C is bounded.

Proof. Contrary to this suppose c, — o for a Certain subsequence n,.
We may assume without loss of generality that p°™ is convergent in R
say to v. By Corollary 24, v # §, and, consequently, by Proposition 2.2, all
limit points of T, 1™ belong to P. But, by (3.5), the measure g is a limit
point of 'I;.k 1™ and ge B, which yields a contradiction. The lemma is thus
proved.

LEMMA 34. If G(u) = B, then 0¢C and

G < {T.-1¢: ceC).

Proof. Suppose that 0eC and c, —0. Passing to a subsequence if
necessary, we may assume that u’™ is convergent, say to v. Since ve G(y), we
have ve B. Then

e= hm 1:"k ”°"k = 609

t—+a
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which contradicts the assumption g # d,. Thus 0¢ C. Suppose now that
Ae G(u) and "™ — A. Taking into account Lemma 3.3, we may also assume
without loss of generality that the sequence c,, converges to a positive

number ¢. Then

o=lmT_ "™ =Ta2,
k—o "k
which yields 4 = T,-1¢. The lemma is thus proved.
LEMMA 3.5. For every ue ‘R we have the inclusion

{T.-10: ceC, c>0) c G(y).
Proof. Suppose that c, —c > 0. Then
W =T (T, 1™~ T-10,
ny

which yields T.-10€e G (p).

From Corollary 3.2 and Lemmas 34 and 3.5 we get the following
statements:

CoroLLARY 3.3. ®(u) = {0} if and only if C ={0).

CoROLLARY 34. If G(u) = B, then 0¢C and

G(y) = {T.-10: ceC}.

Corollary 3.4 shows that in the case ®(u) = B the unit 4 of the group
®(p) is of the form 4 = T.-1p for a certain positive number c. Hence g is
also an idempotent and, consequently, all elements of ®(u) are idempotents.
Applying Corollary 3.1 we get the following statement:

CoRrOLLARY 3.5. If ®(u) = B, then &(u) and, consequently, C are one-
point sets.

Combining Corollaries 3.2-3.5 we conclude that the norming sequence
c, is always convergent to a non-negative number. Thus taking u =4, we
have, by axiom (1.1), the following

THeoReM 3.1. Each generalized convolution algebra (B, o) is either quasi-
regular or 63" — 7y, where y is an idempotent in ‘B different from .

4. Idempotents. Let I and J be the sets of all idempotents in the
algebras (P, 0) and (B, 0), respectively. Both sets I and I are closed
semigroups under the operation o invariant under maps T, (a > 0).

Lemma 4.1. IR, = 16,.).

Proof. The relation 6, €3N R, is obvious. Suppose that LeIn P_.
Then A =ai’'+(1—a)d,, where A’'e*P and 0 < a < 1. Since

Aod=a*Aod+(1-a?)é,,
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we conclude that a =0 and, consequently A =6,, which completes the
proof.

CoRrOLLARY 4.1. If 2 J and A({0}) > 0, then A = d,.
Proof. Setting a = 1({0}) > 0, we have the formula
A=ado+(1—a)d’, where AP and 1'({0}) = 0.
Since T4 = ado+(1—a) T, A, we conclude, by Proposition 2.1, that
T.A—abo+(1—a)é, when c— .

Thus ado+(1—a)d,€ 3. Applying Lemma 4.1, we obtain a =1, which
completes the proof.
Lemma 4.2. If pe P and T, p°" — 6o, then

pu"([0, a,'b])—1 for every b> 0.
Proof. Consider the countable product
R%¥ =R, xR, x ...
with the Tihonov topology and the product measure

ur=uxpux...

on Borel subsets of RY. Using the notation

y= (yl’ Y2, "')ERI:
we have, by (2.13),

T p"=|..| gléa,,,u(dyl)---u(dy,.)

=[O (5,';,jp*(dy) mn=1,2,..).
R, i=1
Suppose that T, u°" — do. Then, by Lemma 2.1, each monotone increasing
sequence of positive integers contains a subsequence n, < n, <... such that

m
O é
i=1

oo for all ye Y;,,

anyj
where Y, is a Borel subset of R with u*(Yy) =1. As a consequence of
Corollary 2.5 we have the relation
max{a, y;: j=1,2,...,m} =0
for all yeY,. Thus
p* {y: max{a, y;: j=1,2,...,m} <b}—1
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for every b > 0. The probability which figures on the left-hand side of the
above formula is equal to u™ ([0, a, ' b)). This shows that every subsequence

of the sequence u"([0, a, ! b]) contains a subsequence tending to 1, which
yields the assertion of the lemma.
LemMMA 4.3. Each idempotent from I has a bounded support.

Proof. It is enough to consider idempotents v different from J,. Let k be
a positive integer satisfying the inequality 1/k < 1—v(}0}). Then for n > k the
sets
B, = {b: v([0, b)) < 1—1/n}

are non-degenerate intervals. Setting b, = sup B,, we have 0 < b, < b,,,; <
(n>= k) and
4.1) v([0, b,+€])>1—1/n (n=k)

for every ¢ > 0. We shall prove that the sequence b, is bounded. Contrary to
this suppose that b,— o0 and put a,=2/b, (n=>k). Then a,— 0 and,
consequently,

L v"=T,v—d,.

Applying Lemma 4.2 we have

4.2) v'([0, b,/2]) — 1.

Oq the other hand, v([O0, b,/2]) < 1—1/n (n = k), which yields
V'([0, b/2]) < (1—1/n)* (n=k).

The right-hand side of the last inequality tends to e~! when n— oo, which
contradicts (4.2). Thus the sequence b, is bounded and, consequently, has a
finite limit, say b. By (4.1) we conclude that v([0, b+1]) = 1, which shows
that v has a bounded support. The lemma is thus proved.

Given pe ‘B, we denote by m(u) any median of . It is clear that m(T, p)
=cm(pu) (c > 0) and the relations p, — p and m(u,) —» m imply m(u) = m.

Lemma 44. If 4,€3 and m(A,) — O, then 1, — 6,.

Proof. Let 4 be a limit point of the sequence A4,. Then 1eJ, m(1) =0
and, consequently, 1({0}) > 0. Applying Corollary 4.1 we get A = §,, which
completes the proof.

An idempotent A from 3 is said to be completely stable if for any pair
a, beR, the formula

T; '1 o T; A’ = Tmax(a.b) '1

holds.

LemMa 4.5. If 3 # {8}, then 3 contains a completely stable idempotent
different from d,.
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Proof. Suppose that ue J and u # é,. Then, by Lemma 4.4, m(u) > 0.
Passing to a measure T, u (c > 0) if necessary, we may assume that m(u) = 1.
Put x; =1 and let x;, x;3,... (0 <x; <1, j=2,3,..) be a sequence dense
in [0, 1]. First we shall construct inductively a sequence v, of idempotents
from J satisfying the conditions

4.3) m(v,) =1,
4.4) T,vov,=v, (j=1,2,...7.

We define v, as u. Suppose that for some r the measure v, has been
constructed to satisfy conditions (4.3) and (4.4). We shall construct v,,,. Put

4.5) Uy=v,00T. v, (n=1,2,..)
=1 41

and introduce the notation m(u,) = m,. Since, by (4.3), v, # d,, we conclude,
by Corollary 2.4, that é, is not a limit point of the sequence u,. Moreover,
u,€ 1, which, by Lemma 44, yields

(4.6) lim m, > 0.

n—w

Put ,=T -1, (n=1,2,..). Then g, and

4.7) me)=1 ((n=1,2..).
Further, taking into account (44) and (4.5), we have
4.8) T,en00=0. (j=1,2,...,7)
and

4.9) L1 10n00n = 2aO Wy,

where w, = Tm"x":,' v,. Since 0 < x,,, <1, we have, by (4.6),

(4.10) w, — 8.

We define v,,, as an arbitrary limit point of the sequence g,. By (4.7) we
have m(v,,,) =1, which shows, according to Lemma 4.1, that v, ,e3J.
Moreover, by Theorem 2.1 and formulas (4.8){(4.10) we get the equation

7;1\"+10V,.+1=V’+1 (j=19 2,""r+1)'

This completes the induction. Let A be a limit point of the sequence v,. By
(4.3) we have m(4) = 1, which, by Lemma 4.1, yields 1e 3. Moreover, 4 # §,
and, by (4.4), we have ’1;1.102. =A (=12,..). Since the sequence x; is
dense in [0, 1], the last equation implies T,A04 = 4 (0 < x < 1). Combining
this equation with the distributivity of o with respect to all maps T, (¢ > 0)
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we infer that the idempotent A is completely stable, which completes the
proof.

LEMMA 4.6. If a generalized convolution algebra (B, o) contains a com-
pletely stable idempotent different from d,, then o = .

Proof. Let A be a completely stable idempotent in 3 different from 6.
By Lemma 4.3 the support N(4) is bounded. Passing to T.4 for a certain
¢ > 0 if necessary, we may assume without loss of generality that

4.11) N(@A)<[0,1] and 1eN(4).
By (2.13), for any a, be R, we have the formula
Tl;:ax(a.b)}‘ = 7:1'107;2' = _’. I 5a06bu'l(dt))'(du),

Ry R4
which, by Proposition 2.3 and (4.11), yields
N (0g 004) © N(T 50y 4 < [0, max(a, b)]
for all ¢, ue N(4). Taking, by (4.11), u=t =1, we get
N(,00,) = [0, max(a, b)] (a, beR,).
Then it follows from (2.13) that for every ¢ >0

(4.12) N@uov)<[0,c] if N(wuN( <[O0,c].
Taking ¢ <1 we have, by (4.11),

(4.13) a(c) =4((c, 1])>0.

Put

(4.19) u(E) = a~ () A(E N (c, 1]),

ve(E) =(1—a(c)) ' A(E N[0, c]) if a(c) <1 and v, =4, if a(c) = 1. Then, by
(4.11) and (4.12),

N(T.Aov)<[0,c] (0O<x<o),
which implies
(4.15) (T.20v)((c, 1])=0 (0<x<o).
Moreover, 1 = a(c) u.+(1 —a(c))v. and

A=T.Aodl=a()puoT,A+(1—a(c)) T,Aov, (0<x<c).
Taking into account (4.15) we conclude that
A(c, 1]) =a(@(TAop)(c, 1]) (O<x<o),

which together with (4.13) yields

(Liow)((c, 1) =1 (O<x<o).

11 — Colloquium Mathematicum LV.1
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Consequently, T, Aoy, — 6, when ¢ — 1 (0 < x < 1). Since, by (4.14), u.— é,
when ¢ — 1, we have the equation T, 406, =, (0 < x < 1). Then it follows
from (2.13) that

8, = T,A08, = | 0,08,4(d) (O<x<1),
Ry

which, by Proposition 2.3, yields N(d,09,) = {1} or, equivalently, J,, 05,
=0, for te N(4) and 0 < x < 1. Taking, according to (4.11), t =1 we get
0,08, =4, if 0<x <1, which yields

0,00, = Oparapy for all a, beR,.

Thus, by (1.2), 6,06, = d, (16, (a, be R,) which, by (2.13), gives the equation
puov=uv for all u, ve P. Thus o = [J, which completes the proof.

As a consequence of Theorem 3.1 and Lemmas 4.5 and 4.6 we get the
following statements:

THEOREM 4.1. The generalized convolution algebra (B, D) is the only non-
quasi-regular algebra.

THEOREM 4.2. A generalized convolution algebra (B, o) is quasi-regular if
and only if 8, is the only idempotent in (B, ).
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