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PREDICATES AND MEASURES ON BOOLEAN o-ALGEBRAS
BY

J. SHREIDER (MOSCOW)

Let (4, v, A, 7,0,1) be a Boolean o-algebra (an N,-complete
Boolean algebra in the terminology of [2]). The natural partial ordering
of A is defined by z <y if and only if zvy = .

For any (countable) subset £ of A the notation

z = V x
zeE
will mean that

z=\a and zAy =0
zeE
for all distinct x, ye E. Let II be a predicate on A, i.e. a mapping of A
into the two-element Boolean algebra {0,1}. II is called additive if, for
every countable subset £ of A such that

ANIl(z) =1,
xeE
we have
oV« =1.
zeE

Given a predicate II, we put (HII) () = 1ifII(y) = 1forall0 # y <z,
and (HII) (z) = 0 otherwise. It is evident that HII is a predicate on A.
It follows from the distributive law

(V @)ay = V (zAy)

zeE xeK

that if 17 is additive, then so is HII.
A function u: A — R is called a (signed) measure if

p(z) = D u(@)
zeE
for every countable subset ¥ of A such that

z =V a.

zeE
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Here and in the sequel R stands for the set of all real numbers. Given
a measure u, we denote by O, the predicate HII, where II(x) = 1if u(x) =0
and II(r) = 0 otherwise. A predicate I on A satisfying O,(x) < II(x)
for all xeA is called u-continuous. A predicate IT on A satisfying

HH(2)AO,(y) < II(xvy) for all z, yeA

is called u-stable.

Given a predicate II, we put (H,II)(z) =1 if II(y) =1forall y <«
with 0,(y) = 0 and (H,II) (z) = 0 otherwise.

The purpose of this note is to establish & decomposition theorem
for predicates which generalizes (as will be shown later) the well-known
decomposition theorems of Hahn, Jordan and Lebesgue.

THEOREM. If a predicate II and its negation I are additive, I i
u-continuous and 111 is u-stable, then there exists a ye A for which HII(y) = 1
ond H,("II(7)) = 1. ’

To prove this Theorem we need some lemmas.

LEMmA 1. If I is additive and u-stable, then H,II is additive.

Proof. Let

y=Va and A (HJI) (@ =1,

zeE zeE
where E is a countable subset of A. Fix a z¢4 with z2<y and 0,(z) =0,
and put
E, ={weH: O,(2A7) =0} and E,=FE—E,.
Then
N1l(zaz) =1,

zeE)

so that, by the additivity of IT,
oV (za2) = 1.

FEEI

Moreover, the additivity of 0, yields
0,( vV (zaz)) = 1.

zth

It now follows from the u-stability of IT that II(z) = 1. Therefore,
H,II(y) =1 and the proof is complete.

LeMMA 2. If II is additive and u-continuous, then
H,("H, (")) < HII.
Proof. Let zed. We may assume tha;t
(H,("H, (")) (z) = 1.
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This means that, for every y < # with 0,(y) = 0, there exists a 2 << y
such that O,(z) = 0 and I1(z) = 1. We must then deduce that II(y) =1
for all y < z.

If O,(y) =1, we have II(y) = 1 by the u-continuity of II. Suppose
‘0,(y) = 0. Then one can easily construct, by transfinite induetion, a count-
able set {z,} = A such thatz, <y, 0,(2,) = 0,II(2,) =1, and 0,(yAz) =1,
where z = Vza. Since II is u-continuous, II(yAzZ) =1, so that, by the

additivity of u, II(y) = 1.
Proof of the Theorem. If there exists no z¢ 4 with (H,/1) (z) =1
and O,(z) = 0, then, by Lemma 2, the assertion holds for y = 1.
Suppose there exists an zeA with (H,(7I)) () =1 and O,(z) = 0.
Then one can easily construct, by transfinite induction, a countable set
{z.} = A such that

(H, () (2,) =1, 0,(2) =0 and (H,("M))(u) =0

whenever unz = 0 and O,(u) = 0, where z = Vza. Put y = z. Clearly,
we then have ¢

(7, ("H, (M) (v) =1,

so that, according to Lemma 2, (HII) (y) = 1. Moreover, by Lemms 1,
(H,.(1)) (§) = 1. Thus the Theorem is proved.

Remark. It is easy to verify that an element y-satisfying the con-
ditions of the Theorem is defined y-almost uniquely. More precisely, if
there exists another element y'e¢ A for which we also have (HII) (y') =1
and (H,(1II))(y’) =1, then

0.((yA7)v(gay)) =1.

Let us give some important applications of the Theorem.

First we consider the following predicate: II(x) =1 iff u(z) > 0,
where u is a measure on A. Clearly, all assumptions of the Theorem
are satisfied. Hence there exists a ye¢ A such that u(2) >0 if 2<y, and
u(2) <0 if 2 <y. Thus the elements y and ¥ form a Hahn decomposition
of 1 with respect to u (see [1], p. 121). In view of the Remark, such a de-
composition is u-almost unique. Put u.(z) = u(zAy) and up_(2)
= —u(xny) for weA. Clearly, u, and p_ are non-negative (finite)
mutually singular measures on A. Moreover, we have

(1) p(@) = py (@) —p_(2),

which is the Jordan decomposition of u (see [1], p. 123).
Now we can define the variation of the measure 4 on an reA as
the sum

lul(@) = py(2) +p_(2).
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The function |u| is a positive (flmte) measure on 4 and |u|(x) =0
is equivalent to O,(x) = 1.

Next we consider a predicate I7 defined by II(x) = 1 iff 0,(x) < O,(x),
where u and » are measures on 4. We write

n(2) = |pl(®)+ v|(®).

The predicate II is additive and =n-stable. An application of the
Theorem gives immediately the decomposition
(2) »(@) = 15(@) +7,(@),

where v,(x) = v(zxAy) and v,(xr) = v(xAy). It is easy to verify that »,
is absolutely continuous and », is singular with respect to u. Thus (2)
is the Lebesgue decomposition of » relative to u (see [1], p. 134).

The author is thankful to I. M. Gelfand and H. Rasiowa for a dis-
cussion of these problems.
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