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1. Introduction. We shall consider oscillatory integral operators

(1.1) Df(z)= [ eMEp(a,y)f(y)dy, A>0,
R

where 8 € C§°(R™ x R™) and where the phase function ¢ € C*°(R™ x R") is
real. If

(1.2) det ( ¢

az j 6yk

)50
it was proved in Hérmander [4] that

(13) I3 flizs ey S CATP i fllommy, 1P <2, 1p+1/p' =1,

By taking ¢ = (z,y), one sees that this inequality implies the Hausdorff-
Young inequality. It is also not hard to argue that the decay in A is optimal.

The purpose of this paper is to study oscillatory integral operators when
the hypothesis (1.2) is relaxed. Since L? — L?' estimates follow from inter-
polating between L? — L? and L! — L* ones (the latter are trivial), the
real issue is to obtain the optimal decay of ||T)||L2— L2 in A.

Before stating our hypotheses, it is instructive to state (1.2) in an equiva-
lent form. Given any phase function, one can define the associated canonical
relation

(1°4) C¢ = { (z’ ¢;(:v,y), y,—¢;(a:,y)) }

Since we are assuming that ¢ is real and C'®, it follows that Cy is a smooth
Lagrangean submanifold of 7*R™ x T*R", when the latter is endowed with
the usual symplectic form d§ A dz — dn A dy. Here T*R"™ of course denotes
the cotangent bundle of R". The convention of including the minus sign in
the last factor of (1.4) is used in the theory of Fourier integral operators
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and it will also be useful for us since it simplifies the composition formulas
to follow.
Using the canonical relation Cy4, we can finally reformulate (1.2). In fact,
if
H](Z,f,y,ﬂ)=($,f), H2(z’£7y’17)=(y7'7)

are the projection operators onto the two factors, then (1.2) is equivalent to
the condition that II; : C4 — T*R™, j = 1,2, are local diffeomorphisms. In
this nondegenerate case the condition is symmetric: if one of the projection
operators from Cy4 to T*R" is a local diffeomorphism, then so is the other
one.

In many cases, such as in the study of restriction theorems or Bochner—
Riesz theorems (see [1}, [9]), one wishes to prove optimal estimates for the
oscillatory integral operators when the mappings II; : C4 — T*R™ are al-
lowed to be singular. We shall be concerned with the case where the map-
pings may have the simplest type of singularities. Recall that a C* map f
between C'* manifolds X and Y is said to have a Whitney fold at zo0 € X
if (i) dim Ker f'(zo) = dim Coker f'(z¢) = 1, and (ii) the Hessian of f at
zo is nonzero. In this context the Hessian is the quadratic form

Ker f'(z0) 3 7 — (f"(z0)n,n) € Coker f'(zo).

The standard example of a map with a folding singularity is the map f(z) =
(Z15- -y Zn-1,22). In fact, it is well known that if f has a folding singularity
at zg, then local coordinates can be chosen around zo and f(zo) so that f
takes this form. (See [5, Vol. III, pp. 492-493].)

We can now state our main result.

THEOREM 1.1. Suppose that each of the projections II; : C4 — T*R™,
J = 1,2, has at most folding singularities. Then

(1.5) IT2fllza(ey < CAT2H/8 | ]| Lama),

and this result is always sharp if B(zo,y0) # 0 below some folding point
(zO, ¢.{r1 Yo, _¢;/)’

There is a homogeneous version of (1.5) which is due to Melrose [6]: If
F € I*(X,Y;C’) is a Fourier integral operator of order u, and if each of the
projections from its canonical relation to T7*X\0 and T*Y\0 has at most
folding singularities, then F : L, omp(Y) = L} _; /g 10c(X)- This result
is sharp, and like (1.5) it reflects a loss of 1/6 derivatives compared to the
nondegenerate case.

The proof of the restriction theorem of Zygmund [9] also led us to study
folding oscillatory integral operators. Recall that at a certain stage in the

proof of the restriction theorem for R? one is led to estimating oscillatory
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integrals of the form
27 27

(1'7) f f eiz\(x,(costl-i-costg,sin t1+sin t3)) f(tl)f(tz)dt.
0 O

The phase function ¢(z,t) here has the property that the projection from
Cy to the second factor of T*R? x T*R? has folding singularities, while
the projection onto the first factor has a different type of singularity when
t1 = t;. Thus operators of this form do not quite fall into the scope of
Theorem 1.1, which is well since it is known that the L2 norm of (1.7) (over,
say, the unit ball) is only < CA=Y4([ [ | f(t1)f(12)|* dt)!/? in general. In
the proof of the restriction theorem, on the other hand, one does not try to
estimate the L2 norm of (1.7) directly in terms of the L2 norm of f. Instead,
the argument of [9] uses the fact that the oscillatory integral (1.7) has a very
special form since its integrand is symmetric in t; and ¢,.

Returning to Theorem 1.1, the model case occurs when the phase func-
tion of T is

(18) ¢=¢0 = (z"y,>+(a’n"yn)39 z': (xla'--’xn—l)-

Here the folding points occur when z, = y,. In the proof of our result,
we shall first show that operators with this phase function satisfy the de-
sired estimate (1.5). The next step will be a reduction which shows that
the estimate for general operators follows from this special case. The main
ingredient in this part of the argument is a result of Melrose and Taylor [7]
which says that, near a folding point, one can make a symplectic change
of variables transforming a general canonical relation (1.4) to the model
canonical relation Cy,. One of course makes use of this change of variables
lemma by conjugating T\ by certain nondegenerate oscillatory integral oper-
ators. This argument is similar to ones involving Egorov’s theorem since the
nondegenerate oscillatory integral operators one uses are essentially dyadic
Fourier integral operators.

2. Model case. The purpose of this section is to prove a special case of
Theorem 1.1. In the next section we shall see that the general case follows
from this special case and the estimate (1.3) for nondegenerate oscillatory
integral operators.

PRrROPOSITION 2.1. Let 8 € C§°(R™ x R™) and set
(2.1) T f(z)= [ eP*=0p(z,y)f(y)dy,
n’l
where ¢g is the phase function defined in (1.8). Then
(2.2) TS fllL2mny < CAT2HE| £l Lo(ny.
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The proof is very simple. Let us assume for a moment the following:

LEMMA 2.2. Suppose that T? is defined as above. If in addition B(z,y) =
0 when z,, = y,, then, for large A,

(2.3) ITRflL2(rn) < A~/ (1og M)'/2 || fll La(me).-

Since the decay in (2.3) is much faster than in (2.2), we conclude that,

in the proof of (2.2), we may replace 8 by a cutoff function of the form
Bi(z',y") - B2(zn — yn), where B € C(R™1 x R*~1) and B, € C{°(R).
Then we have

T (2, 2n) = [ €M 8 By(20 = yu)SA(F(+ 1 ¥n))(@")dym,
R

with

G = [ eXEVIB (!, ) f(Y, yn)dy'.
Ru—l
The result for the nondegenerate case, (1.3), yields

(24)  |ISx(f(- > yn))llLzRea-1) £ CATC=D2|| £ yo)|| La(Re-1).-

By taking Fourier transforms in the z,-variable, we have

[ 5 2n)eP =6 don = ma(6n) - [ SA(S(-,3n))(2 )0 d,
R R

where my(&:) = [ elent+22%18, (1) dt. Tt is well known that |my(£,)| <
CA~1/3, By using Plancherel’s theorem, this immediately leads us to

J T £, 20)1 dzn < CATH2 [ [SA(S(+ 1 ¥n))(2")|? d2.
R R
If we now integrate in the z’-variable and apply (2.4), we get
J 1B f(a 2n) de < CAD2E [ f(a)[? da.
R" R"
Proposition 2.1 is proved. =

Proof of Lemma 2.2. If we set E(a:,y) = fB(z,y) when z, > y,,
and 0 otherwise, then the desired estimate would follow if we could show
that the operators

Rf(z)= [ eXCDF(z,y)f(y)dy
-

also satisfy an analogue of (2.3).
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To prove this, we shall use the argument of [4]. After squaring the L2
norm and taking adjoints, it is not difficult to see that this is equivalent to
the estimate

(2.3) I(T)" TR fllLe < CA~"log Al| £l La-

The kernel of the operator here is

Kx(z,y)= [ el 2V H(En=2) =00 ~2)"1 §(z, 2) By, 2) dz.
R"
Observe that on the support of the integrand
1(8/0z0)[(zn — Zn)3 — (Un — 20 )| = |20 — Unl(|Zn — 2l + |yn — 2a])-
Thus, since we are assuming that B = 0 when z, = 2,, an easy integration
by parts argument shows that
(2, 9) < Cn(1+ Az’ = ¢') 7N (14 Mz — yal) ™

for any N. Since this estimate implies that the L! norm of the kernel with
respect to either of the variables is O(A~"log ), we get (2.3').

3. Reduction to model case. To prove Theorem 1.1 we shall use
the special case, Proposition 2.1, plus the following change of coordinates
lemma of Melrose and Taylor [7].

LEMMA 3.1. LetC C T*R™ x T*R™ be a canonical relation. Assume that
at C 3 (s1,582) both of the projection operators Il;, j = 1,2, have folding
singularities. Then there are local symplectic coordinates (z,£) near s, and
(y,n) near s, so that C becomes

(3.1) Coo = {(2,4,3(zn — ¥2)%; ¥, 2", 3(20 — ¥)*)}-
In other words, in the new symplectic coordinates, C is the canonical relation
associated to the model phase function ¢o = (z',y') + (T — yn)3.

Remark. Lemma 3 says that there are canonical transformations x;,
X2 so that (locally)

(3'1,) Coo = {(z,&9,m): (2,8) = xa(w, 1), (¥,m) = x2(2,¢), ]

(w,7,2,() € C}.
Unlike the usual situation (i.e. when one uses Egorov’s theorem), the canon-
ical transformations need not be homogeneous.

To apply this lemma, we shall need to understand the composition of T
with certain operators that are nonhomogeneous versions of nondegener-
ate Fourier integral operators. To this end, suppose that x is a canonical
transformation. Then

(3.2) G = {(z,&9,m): (z,€) = x(y,m)}
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is a Lagrangean submanifold of 7*R" x T*R". If G C (T*R™\0) x (T*R™\0),
then it is well known that we can choose local coordinates around a given zg
so that G 3 (z,§&,y,7) — (z,n) is a diffeomorphism. (See [3, pp. 153-154].)
In this situation G is described by a generating function S(z,7), i.e.

(3.2) G = {(z,VS5(z,n), VyS(z, 1), n)}-
In other words, G is parameterized by the phase function
(3.3) ¥ =5(z,8) - (v,6)

Let F be the following operator associated to (3.2)—(3.3):
(3.4) Frg(z) = A" [ [ eX¥Evha(z,y,£)g(y) dédy,

where a € C§°(R?").
The next result describes the composition of the operators in (1.1)
and (3.4). ‘

LEMMA 3.2. T, o F) is an oscillatory integral operator of the form (1.1)
whose phase function ¢ has canonical relation

C; = C¢OG = {(z’fi y? 1’) : for some (Z, C)v(zva Z’C) e c¢7(z’ C’ y’ 77) e G}'

Stmilarly, F) oT) is an oscillatory integral operator of the same form whose
phase function has the canonical relation GoCy. The amplitude, 3, depends
on A, but it belongs to a bounded subset of C§° as A — oo.

Proof. Since results of this type are essentially in [3], we shall just
sketch the proof. The kernel of the composition is

A" f fei[x¢($'2)+s(yv£)—(z’£)]a(y, z, E)ﬂ(z, Z) d{dz-

Stationary points occur when V,® = 0 and V.® = 0, if ® is the phase
function in the formula for the composition. The stationary points are

nondegenerate since
2
det( oS ) #0.

az_,'afk

Consequently, the result follows from van der Corput’s lemma.
LEMMA 3.3. Suppose that a(zo, yo,&) # 0. Then F\F} has kernel

A [ eiM=—v0g(, y, £) dE,
where &(zo, Yo, &) # 0 and & € C°(R3").

Proof. Similar to proof of Lemma 3.2.
If we use the fact that the norm of F} is the square root of the norm of
F\Fy, then Lemma 3.3 yields:

COROLLARY 3.4. If S(y,€) and a as above are fized, then one has the
uniform bounds || Fy f||2 < C|\|fll2-
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We have finally built up enough machinery to prove Theorem 1.1. After
perhaps multiplying on the left and right by e**(#£) for appropriate fixed
£ € R*, we may always assume that C4, C (T*R™\0) x (T*R"\0). Let then
x1 and x2 be the canonical transformations given by Lemma 3.1. After
choosing the appropriate local coordinates, we can find F} and F? as above
so that FZT,F} is a model oscillatory integral with phase function ¢ as
in (1.8). After perhaps contracting the support of the symbol of T, we can
arrange things so that (FZ)*F:T\F}(F})* = T + R, where Ry has L?
operator norm O(A~") for any N.

Thus, we conclude that Theorem 1.1 follows from Proposition 2.1 and
Corollary 3.4.
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