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ON ¢-ORTHODISTRIBUTIVITY
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In this note it is shown that any o¢-orthomodular poset % with the
property of s-orthodistributivity can weakly be embedded into a Boolean
o-algebra (Theorem 4). Moreover, if % is a completely o-orthomodular
poset with the property of o-orthodistributivity, then % is embeddable
into a Boolean c-algebra (Theorem 5).

’ Let L be a non-empty set, partially ordered by the relation <. Let
a+>a’ map L into L. One says that ¥ = (L, <, ') i8 a a-orthomodular
partially ordered set (o-orthomodular poset) if the following conditions are
fulfilled :

(1) (a') =a;
(2) if a<<b, then b'<

3) ifa,,as...,a,,. belongtoL (n € N)and a; < a;forany s, j (¢ # j),
then the lea.st upper bound (l.u.b.) a of the set {a,: n € N} exists in
L, ie., a = a,Va,V...;

(4) ava' =0bubd’ for any a,d eL'
(6) if a<b, then b =au(b'Ua)'.

In our further considerations we shall use interchangeably the terms
“g-orthomodular poset” and “quantum logic”.

We have the following consequences of conditions (1)-(5).

If a <b’, then a is orthogonal to b and we write a | b.

It follows from (1) and (2) that a < b’ is equivalent to b < a’, i.e. the
orthogonality relation | is symmetric. Notice that a | a'.

Condition (3) says that if a,, a,, ... are pairwise orthogonal, then the
lLa.b. ¢ = a,Va,V... exists in L. Then we write a = a,+a,+ ... and this
means that a; | @; for ¢ # j and a = a,Va,u...

Condition (4) says that the greatest element 1 (the unit element)
exists in L and 1 = ava’ for every a e L. Hence, by (2), the least
element 0 (the zero element) exists in Z, and 0 = 1'.

Taking a;,, = a;,, = ... = 0 in (3), we see that finite sums of ortho-
gonal elements a = a,+a,4 ...+ a; exist in L.
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If a <b, then a | b’; hence b'U a exists.

It follows then from (1) and (2) that(d'va) =bna’. But a [bna’;
hence, by (3), au (b'U a)’ exists.

Condition (5) claims equality and no existence. It is a weakened
form of the law of modularity and is referred to as the law of orthomodu-
larity or the law of weak modularity. >

Every set or sequence consisting of pairwise orthogonal elements
of L is called an orthogonal set or orthogonal sequence, respectively.

We admit the following notation: algebraic objects, e.g., Boolean
algebras, quantum logics, are denoted by script capital letters «#, &, ..., Z
with subscripts, if needed, while the carriers of these objects are denoted
by the same italic capital letters 4, B, ..., L.

Every Boolean algebra is an example of quantum logic. Generally,
< need not be a Boolean algebra or even a lattice. However, it may happen
that a certain subset A = L has the properties: if a,b e A, then auUbd
and anb exist in L and belong to 4, and if a € 4, then a’ € A. A system
o ={4; v, n,’> forms then a lattice with orthocomplementation.
Moreover, if of is distributive, then o = {(4; U, Nn,’> is a Boolean
algebra contained in .#. Observe that then for any two elements a,b € A
the following condition holds in #: a] biff anbd = 0. It follows from the
above that if o is a Boolean subalgebra in a quantum logic & and for
any sequence a,, d,, ..., a,, ... of mutually disjoint elements in A (hence
orthogonal in L) the l.u.b. ¢ = a,+a,+ ... (which exists in L) belongs to
A, then & is a Boolean |o-algebra. Then we say that |« is a Boolean
o-subalgebra in #. Thus we arrive at the following definition:

Definition 1 (see, e.g., [6]). Let A be a subset of a quantum logic Z.
Then & = (4;uU,n,’> is|a Boolean o-subalgebra in ¥ with respect
to the operations U, N, ' if

(a) for any a,be A the lLub. aub and the g.l.b. (greatest lower
bound) anb exist in L and belong to 4;

(b) if ae A, then a' € 4;

(e) <4, U, N> is a distributive lattice;

(d) ifa;e Afor:s =1,2,...and a; | a;fori # j, then a,+a,+... € 4.

We admit the following definition:

Definition 2 (see [5]). Let % be a quantum logic. A subset X < L
is compatible if there exists a Boolean o-subalgebra & in % such that
X c A.

If X = {a, b} and X is compatible, then we write a « b.

THEOREM 1 [B]. Let ¥ be a quantum logic and a,b € L. Then a < b
iff there exist pairwise orthogonal elements a,,b,,c, € L such that a = ay+¢,
Md b = bo+00.
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Remark. In [1] we have defined quantum logics as o-orthomodular
posets satisfying additionally the following condition:

For any a,b,c€ L if a, b, ¢ are pairwise compatible, then auUd « ¢.

Let £ be a quantum logic. Let {a,},,, be an orthogonal infinite
sequence of elements of L (a, # 0,n =1, 2,...)such thata, +a,+... = 1.
Notice that a,, a,, ... are pairwise different. For any set N, = N let

ay, & sup{a, : n € N,}.

Let A = {ay,: N, €2"}. If N, =@, we admit a; = 0. The following
equalities hold true:
(») ajvo = QN_Ny)
(»#) ay N, = oy Vay,,
(%%%) ay n, = Gy Nay,.
(#) For any n e N—N,, a, | ay,, ie., a, < ay,. Hence ay_y < ay,.
From (5) we obtain '
aivo = ay_y,Y(ay,YVay_x,) -
But ay Uay_y, = 1. Hence ay, = ay_n,U0 = ay_y,.
() Obviously, ay,<ayun, (¢# =1,2). Let beL and ay<b,
ay, < b. Then a, < b for any » € N,UN,. Hence ay ,y, < b.
(#xx) follows from () and (xx).
Moreover, No—>ay, (Noe€ 2Y) is a one-to-one mapping. Thus we

have proved that o = {4; U, N, ’) is a Boolean algebra in % isomorphic
to the field of all subsets of ¥ (¥ — natural numbers). Notice that
aNIJ_aNz iD. L iﬁ NlnNz =g-

Hence ¢ is a Boolean o-subalgebra in #.

Let b,, b,, ... be an infinite orthogonal sequence (b, # 0,7 =1, 2,...).
I b,+b;+... #1, then we put by, = (by+by+...). Thus the sequence
bey by, by, ... has the property: b,+b, +by+... = 1.

We use a reasoning similar to that in the case where a sequence
@y, Ggy ..., a, i8 finite,

Hence we obtain

THEOREM 2. Let & be a quantum logic. Then every countable ortho-
gonal set in L is compatible.

Let &, and %, be quantum logics. The mapping h: L, +—> L, is said
to be a homomorphism provided that

(i) a < b implies ha < hb;
(i) h(a’) = (ha)’;
(iii) for any orthogonal and countable sequence a,, @,,... in L,
h(a1+a2+...) = hal+ha2+...
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Ifh: L, — L, is a homomorphism and a < b (a, b € L,), then
ha & hd and h(aUd) = haUhb.

Moreover, if 1 is the unit in L,, then 41 is the unit in L,.

A homomorphism h: L, — L, is said to be a weak embedding pro-
vided that, for any a,beL,, if a# b and a - b in L,, then ha # hb.
A one-to-one homomorphism is an embedding. An embedding % of type
“onto” and preserving order, i.e., such that a < b iff ha < hb (a, b € L,),
i8 said to be an isomorphism.

We assume that the reader is familiar with the theory of Boolean
o-products. Detailed discussion of these problems can be found in [6].
Here, for the sake of clarity of our further considerations, let us only recall
some notions. N

Let {«,}:.4 be a family of Boolean o-algebras. The pair

(6) {tiahiea, B)

is said to be a Boolean o-product of the algebras {«,},., provided that

(a) # is a Boolean o-algebra;

(b) for any 4 € 4, 4, is an embedding of the algebra &, into #;

(c) the indexed family {i,(.9/;)};.4 Of subalgebras of # is s-independent
in #;

(d) the algebra £ is o-generated by the set-theoretical sum of uni-
verses of all algebras ¢,(2;) (4 € A).

Let (6) be a o-product of os-algebras {«f;};.4. Let
B;_ = il('Al) and BO = U‘Bl

Aea

(B; — the universe of #,). B, is a partially ordered set with respect to
the order generated by the order < of the algebra #. The set B, is also
closed under the operation of Boolean complementation. By o-independ-
ence of the algebras #;, the system %, = (B,, <, > forms a quantum
logic. Moreover, if z,, z,, ... is any orthogonal sequence in B,, then the
lu.b. 2, +2,+... in the quantum logic %, is equal to its l.u.b. in the al-
gebra 4.

. Let & be a quantum logic and let {«,},., be the family of all Boolean
o-algebras in #. Observe that

\J4: =L

Aea
(A; — the carrier of ;). Let (6) be a Boolean o-product of the algebras
{A3}ica- Lot B, = (By; < ,’> be the quantum logic defined as above.
We define a relation ~ in B, as follows:
x ~ y iff there exist 4,, 1, € 4 and an element a € L such that v =1, a
and y = 4;,a.
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For each x € B, there exists exactly one a € L such that # = ¢,a.
Moreover, if # # 0 and # # 1 in B,, then there exists exactly one 4 such
that x = 7,a. These remarks result from the facts that ¢, is an isomorphism
for every A € A and that the algebras {#,},., are o-independent.

~ i8 an equivalence relation in B,. Each layer |z| in B,/~ is uniquely
determined by a certain element a € L, namely by that element a for which
x = i,a. Moreover, v ~ y iff 2’ ~ 9y’ for any z, y € B,. Let |2|, |y| € B,/ ~.
Then we put

| <y if o= 1, @y Y = 13,b and a <b.

< is a well-defined partial order in B,/~. Let |x| € B,/~. Then
we put

at
el = |2'}.

The -operation |z| — |z|’ is well defined.
We shall prove that the system

Bo| ~ =By ~; <,

is a quantum logic.

Conditions (1), (2) and (4) are satisfied in an obvious way. We check
condition (3). Let |2,|, |#,|,... be orthogonal in By/~. Let z, = 1, a,.
Then

1w, Lz, it |z, <le, iff a,<a, iff a,la,.

Let ¢ = a,+a,+... By Theorem 3 there exists a Boolean o-algebra
o, iIn & (i, € A) such that a’, a,, a,, ... belong to A, Let y, =1, a
and y, = 13,8, (n € N). Then |z,| = |y,| for every n € N. It is clear that
Yo i8 the L.u.b. of the layers |y,|, |¥s|, ... In By/~, i.e., |Yo| = 1Yal + 1yal + ...

We show that condition (5) is satisfied in %,/~. Let |#| < |y| and
T =1,4a Yy = 4;,b. Then a < b. There exists a Boolean o-algebra o,
in & such that a,bd €d,;. Let z, =14 a and y, =i b. Obviously,
|z| = |@¢| and [|y|= |y,|. Moreover, z,, yoeBlo. Proving (3) we have shown
that if a, la, (m+#n) in L, ¢ = a,+a,+... and z, = B, Gny Y = iloa,
then |y| = ||+ |#,/ +... It follows from b’ | a that

’
1Yo UTo] = |Yol” + |2,].
Hence

1Yol N@ol” = (190l + [26])" = YU el’ = YoMy .
Asa |bna’ and b = a+ (bna’), we obtain
2] + ([yol Nxol") = |wo|+|?/ona"(’)| = |mou(yonm{,)| = |Yol.

Therefore, the system %,/~ = (B,/~;<,’> is a quantum logie.
Moreover, we have shown that #,/~ is isomorphic to . Thus we have

2 — Colloquium Mathematicum XLI.1
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THEOREM 3. (i) By/~ = {(By/~; <, ") 8 a quantum logic.

(ii) The mapping x — || 18 a homomorphism of the logic &, onto B,/ ~.

(iii) & and B,/~ are isomorphic ().

Now let us focus our attention on ¢-orthodistributive quantum logies.
After Mgczyniski [4] we accept the following definition:

Definition 3. A quantum logic & = (L; <, ’) is-said to be o-ortho-
distributive provided that for every (o, o)-indexed set {a,;}.cnjenv Of
elements of L, where {a, ;},<;<. i8 orthogonal for every n, if

U a,; =1 for every ne N,
jeN

then for every a0 (a e L), there exist a mapping g e NV and beL not
orthogonal to a such that

b< @ppn Iorall nel.

In the case where # is a Boolean oc-algebra, o-orthodistributivity
of & coincides with o-distributivity of # in the sense accepted in the
theory of Boolean algebras.

Let # be a quantum logic and a e L. We admit the notation
(+1)a =a and (—1)a = a'. _

We shall use the following lemma which is a part of Theorem 1 in [4]:

LEMMA 1. Let & = (L;<, ") be a o-orthodistributive quantum logic-
Then £ fulfills the following condition:

If {a,},.n 8 & o-indexved set of elements im L, then for every element
acL, a #0, there exist a function ¢ € {—1, +1} and b not orthogonal
to a such that b < ¢(n)a,, for all n € N.

As before, let (6) be any Boolean o-product of all o-algebras o, (A€ 4)
contained in a quantum logic #. Let A denote the Boolean symmetrical
difference. Let I, =-B (B — the carrier of #) be defined as follows:

I, = {xAy:z ~y}.

Notice that if »,Ay, = 2,Ay, # 0, where z; ~y; (¢ =1,2), then
either z, = z,, ¥, = ¥,, O &, = ¥,, ¥, = %,. Moreover, for any z € I,,
z #1.

LEMMA 2. Let & be a g-orthodistributive quantum logic. Then, for every

denumerable sequence z,, z,, ... of elements of the set I, and for any fized
element xz, belonging to the quantum logic #, (xz, # 0),

won(U2,) #0
neN
in the algebra 2.

(!) A similar theorem for partial Boolean o-algebras has been given in [1].
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Proof. Let 2z, = z,Ay,, where z, ~ y, (n € N). We may assume that
2z, # 0 for every n e N. Let z, =1, (a,), ¥, =1, (a,) for n =1,2,...
(s ¥, € A) and @, = ¢, (a,). Then a, 7 0,1 for every n € N and indices
4, and v, are uniquely determined. By o-orthodistributivity of .#, for the
sequence da,, a,, &,, ... and the element a, one can choose a function
ee{—1, +1}¥Y® and an element b € L not orthogonal to ¢ and such
that b < e(n)a, for every n e NU{0}. From bnon | a, and b < ¢(0)a,
it follows that ¢(0) = +1, i.e., b<a,, and b # 0.

Let A, (A, < A) be the set-theoretical sum of the set {1,} and of the set
of all elements in A occurring in the sequences (u,, s, ...) and (v, ¥4y ..2).
The set 4, is countable. Thus for every 1 e A4,

b<b, = ) e(n)a,,
aneAA

where () e(n)a, denotes the g.l.b. of all elements of the sequence
aped;
(¢(0)ay, £(1)a,, £(2)a,, ...) belonging to the o-algebra «f,. Hence
(b)) = M e(n)iy(a,) # 0
aped;
in the o-algebra #;, = 1,(«,;) = #. It follows from o-independency of
the algebras {#,},., that

(M i3(b;) = m n e(n),(a,) # 0

. Aedy Aedy aped;

in the o-algebra #. But
N N en)ia,) < 13, (@) .= @y,

Aedy ap€d,
() N e(n)iz(a,) < e(n)i,,(a,) = e(n)z, (nel),
dedg aped; .
M () e(n)is(a,) < &(n)i, (a,) = e(n)y, (nel).
ey aned,
Hence

N () cm)is(@,) < 2on () ()2, ne(m)gs) < 70 () [@N3)V(ENY)]

Aedgy aged; n=1
oo

= ZeN (O (wnAyn))’ = won( _lzn)"

Nl n

Thus
won (U 2,)" # 0.

n=]1
It follows from Lemma 2 that I, generates a proper o-ideal in the o-al-
gebra %, which will be denoted by I. Moreover, if 2, € By, ¢, # 0, then
Zo¢ I. The ideal I determines a congruence ~ in #: x ~ y iff zAy e I.
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Let of = #/I and let ||z|| be a layer in o determined by « (# € B). The
mapping « > |z|| is a c-homomorphism of # onto «f (in the sense of the
theory of Boolean algebras). Let x,y € B,. Then 2~y implies 2Ay eI, < I.
Hence =z ~ y.

The mapping v : By/~+> A determined by means of the formula
y(lz]) = |#| is well-defined. We claim that y is a homomorphism of the
quantum logic #,/~ into a Boolean o-algebra . It suffices to show that
if |@,|, [@s|, ... i3 an orthogonal sequence in B,/~ and |z|= |2,|+ |©,| +...,
then

)
lzll = Uizl

n=1
in the o-algebra . It follows from Theorems 2 and 3 that there exist
elements y € |#|, ¥, € |¢,| and a o-algebra %, (4,€4) such that y, 2, € B,
(neN). But y =9y;+9y,+... in the quantum logic #,. Hence

y=Qw

in the o-algebra #. Then
lyl = Ullyal

Ne=]

in the o-algebra «, i.e.,
llell = Uizl -
n=1
We prove that y is a weak embedding, i.e., if |z| # |y|, |#| and |y|
are compatible in B,/ ~, then |z| # |ly| in the o-algebra «. It follows from
Theorems 1 and 3 that there exist A € 4 and z, € |£|, ¥, € |y] such that
Xy, Yo € B; (B, — the carrier of #,). Moreover, z,Ay, # 0 in B and
zo,Ay, € B, (B, — the carrier of the quantum logic #,). By Lemma 2,
xo,Ay, ¢ I. Hence
@oll Allyoll = llZoAy,ll # O

in the o-algebra ./, which means that |z, # |lyoll. But |z|| = ||z,] and
Iyl = liyoll. Hence @] # |lyll.

Thus we have proved the following

THEOREM 4. Let & be a o-orthodistributive quantum logic. Then & can
weakly be embedded into a Boolean o-algebra.

Now, we intend to devote some space to complete quantum logies.
We say that a quantum logic .# is complete if, for every family {a;};.; (I —
any non-empty set) of pairwise orthogonal elements in L, the l.u.b. | Ja;

1el

exists in L. Finch [3] uses the term completely o-orthomodular poset.
Notice that if # is a quantum logic such that every orthogonal set
in L is countable, then % is a complete quantum logic. Due to Finch [3]

such a quantum logic is called separable.
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LEMMA 3. Let % be a g-orthodistributive complete quantum logic. Let
a,beL and anon< b. Then there exists an element d € L,’d # 0, such
that d < a and d < b’.

Proof. We consider two cases.

I. a and b are compatible.
Then anbd’ # 0. We put d = anbd’.

I1. @ and b are not compatible.

Suppose that there is no element d, 0 # d € L, such that d < a and
d < b’. First, we prove that then there is a ¢ e L, ¢# 0, such that ¢ < a and
¢ < b. Indeed, by o-orthodistributivity of ¥ and Lemma 1, for the se-
quence (a,b) and the element a one can choose ¢, d e {—1, +1} and
¢ € L such that cnon | a, ¢ < ea and ¢ < 6b. It follows that ¢ # 0 and
s=+1, i.e., ¢ < a. By our supposition one must have =41, i.e., ¢ < b.

Let

Xa,bg fceLl: ¢c #0&c<adec<b}.

Thus X,, is non-empty. Let M < X,, be any orthogonal set,
maximal in X,, with respect to the inclusion. By completeness of 2,
¢, = sup M exists and ¢, # 0. Then

o< a,c,<b and anc #0,bne, #0.

By o-orthodistributivity of %, for the sequence (anc,, bn¢;) and
the element an¢, one can choose &, 6 € {—1, +1} and an element d € L
such that

dnon | ane,, d<ce(anc), d<d(bna).

It follows that d % 0 and & = +1, i.e., d<anc,<a. We must
have 4 = + 1. Suppose, otherwise, that 6 = —1, ie., d<<(bncy)’
= b'Uc,. But d<<anc, implies d < ¢;, which together with b’ | ¢, implies

(%) d < (b'ue)ney =b'.

But d<an¢, <a and () are contradictory to our supposition.
Thus we must have § — +1, which means that d < bne¢,. The conditions
d #0,d<anc, and d < bne, imply d € X,, and d | ¢,. This contradicts
maximality of M.

Thus the supposition that there exists no element deL, d # 0,
such that d < a and d < b’ leads to a contradiction.

THEOREM 5. Let % be a complete o-orthodistributive quamium logic.
Then & can be embedded imto a Boolean algebra.

The proof is carried on in the way similar to that used for Theorem 4.
For convenience we preserve notation and definitions admitted there.
First we prove
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LuEMMA 4. Let & be a complete a-orthodistributive quantum logic. Then
for every demumerable sequence z,, 2,, ... of elemenis of the set I, and for
any elements x and y belonging to the quantum logic 8, such that znon~ y
we have

@by)n (U =) #0
in the algebra A.

Proof. Let 2, ==,Ay, (¥, ~¥,yn =1,2,...) and x, =1, (a,),
Yo =14, (ay) for n =1,2,... (4, v, € 4). Let 2 =1, (a,) and y = 4, ().
Then a, #* b,. We consider two cases.

1. a, and b, are not compatible.

Then a,non < b,. By Lemma 3 there is a d, # 0 such that d, < a,
and d, < b,. By Lemma 1, for the sequence d,, a,, as, ... and the element
d, one can choose a function ee{—1,+ 1}"Y@ and an element
¢, € L not orthogonal to d, such that e,< ¢(0)d, and e¢,< ¢(n)a,
(n =1,2,...). Hence ¢,< d, and ¢, #* 0. Thus e, is less than or equal
to any element occurring in the sequence (a,, by, &(1)a,, &(2)a,, ...).
It will be convenient to re-enumerate the elements of this sequence. Let

C; =@y € =DbgyC =@1,0 =gy .oy Cf = Cp_yy... (k=3).
Let 6 €{—1, +1}¥ be defined as follows:
6(1) = +1,6(2) = —1,48(3) =¢(1)y..., 8(k) = e(k—2),... (k= 3).
Thus the sequences
(@os boy (1) 8y, £(2) s, ...) and (8(1)e,, 8(2)eq, 8(3)cy, (4)e,, ...)

are identical. Hence ¢, < d(n)c, for every n € N.

Let A, be the set-theoretical sum of the set {4;, 4,} and of the set of
all elements of A occurring in the sequences (i, gz, -..) and (vy, v3,...).
The set 4, is countable. Hence for every 4 € 4,

J
to<d = (N 8(n)e,,
cp€dy

where (1) d(n)c, denotes the g.l.b. of all elements of the sequence
cn€d;

(8(1)e,, 6(2)¢s, ...) belonging to the o-algebra «f,. Hence
ta(d)) = () d(n)is(c,) # 0
en€d,
in the o-algebra £, = 1,(,;) < #. From o-independence of the algebras
{#B,}1ea it follows that
Nid) = N ) 8(n)is(e,) #0

deq, Aed) cped;
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in the o-algebra #. But
N N dm)is(e,) < 8(1)ix (e)) = o,

Aedy cped,

N N d(n)ixle,) < 8(2)iy(00) =¥/,

Aed; cped,

) N d(n)ixo,) < 8(k)iy, _, () = e(k—2)m,_, (B =3,4,...),

Aedy cped)

M M d(n)ix(e,) < 8(k)i,, _,(c) = e(k—2)Ys_ (K =3,4,...).

Aed, cped,

Hence

Niad) < 20w’ 0 () (e(m)zane(0)9,)

Aer n=1

<@ny'n (e V@] < @A n( U (6,80,

Na=l

= (zAy)N( Q 2,)-
Thus
(@Ay)N(Uz,) # 0.

n=l

II. a, and b, are compatible.

Then either a,Nb, # 0 or b,Na, # 0. Suppose that a,Nb, # 0. Let
d, = a,Nnb,. By Lemma 1, for the sequence d,, a,, a,, ... and the element
d, one may choose a function & € {—1, +1}¥“ and an element ¢, e L
not orthogonal to d, such that ¢, < £(0)d, and ¢, < e(n)a, (n =1,2,...).
Next we apply the identical reasoning as in case I.

Let ~ be the congruence determined by the o-ideal I in the algebra
B: v~y iff xAyel. It follows from Lemma 4 that if snon~y,
then znon~ y.

We prove that the mapping y: By/~ +—> A is one-to-one. Let |z| # |y|
in By/~. Thus xnon~ y. Hence rnon~sy, which means that || # |y
in the algebra .

Thus Theorem 5 has been proved.

ProBLEM (P 1064). Can every o-orthodistributive quantum logic
be weakly embedded into a o-distributive Boolean algebra %

_Let ¥ =<L;<,’,1) be any c-orthomodular poset and, as before,
let {of;: A € A} be the family of all Boolean o-algebras in #. Let 1 < u
iff 4, c A, and for A< u let f, , be the identity map from 4, into 4,
(1, p € A). Then

(7) {15 font Ay p€ A}
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forms a partially ordered system of Boolean algebras in Bn in the sense
of Dwinger (see [2], p. 320). Assume that (6) is a maximal Boolean o-prod-
uct. Then the Boolean o-algebra & = #/I, considered above, coincides
with the so-called direct limit of system (7) in Bs (). Hence Theorem 5
can be expressed as follows (see [2], p. 323):

THEOREM 6. Suppose that & = {L;<,’,1) i8 a c-orthodistributive
a-orthomodular poset. Let (7) be a partially ordered system in Bs defined
as above, whose direct limit (in By ) 8 (&, {j;: 4 € A}). Then, for every
Ae A, j, is a monomorphism of .szll into .

(2) The author wishes to thank Professor M. Maozyiiski for making this obser-
vation.
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