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A FURTHER RESTRICTED o-RULE

BY

G. C. NELSON (IOWA CITY, IOWA)

In this paper* we extend a result of Shoenfield given in [6](*). Namely,
if we take the system Z, of [1] with definitions added for all primitive
recursive functions, then the system Z; is complete, where Z; is obtained
from Z, by adding the following restricted form of the w-rule. VoF (x)
is to be a theorem of Z whenever there is a primitive recursive function ¢
such that, for each n, ¢(n) is a proof number of F (%) in Z;. The method
of proof is analogous to [6]. Definitions of concepts undefined here are
to be found in [6] and [2].

If B is a formula of Z,, then [B] denotes the Godel number of B.
Let Prf(a, [B]), In(e,n) be primitive recursive predicates expressing
that a is a Godel number of a proof in Z, of B, and ¢ is an index for a pri-
mitive recursive function of n variables as in [3], respectively. The defi-
nition of a proof number in Z; is given inductively as in [6], except that
only e such that In(e, 1) are permitted as indices for functions in an appli-
cation of the w-rule. If A (z, y) is a formula of Z,, we often write » < 4y
for A(x,y). If A(x,y) is quantifier-free, hence p_r1m1t1ve recursive, and
the sentence Od (< ,4) of Z,, which expresses ¥ < 4y is a linear ordering,
is provable in Z,, then x < ,y is called an ordering formula. The following
lemma is proved in §6 of [4]:

LeMMA 1. If B is a sentence of Z,, there is an ordering formula » < 4y
and a term t(x) such that (Hx) (7] t(x+1) < 4t(w)) — B is provable in Z,,.
Moreover, if B is true, the predicate expressed by x < 4y 18 a well-ordering.

* This paper is Part II of the author’s Ph.D. thesis at Case Western Reserve
University, written under the direction of Professor C. F. Kent to whom the author
expresses his sincerest appreciation.

(1) The statement that formula (1) of [6], p. 406, is provable in Z, for arbitrary
ordering formula ¢ < 4y and term #(x) is incorrect, e.g.,if r < 4y = y < v and {(x) = <,
then (1) is false. This fact was pointed out to me by C. F. Kent and it is the purpose
of this paper to provide a correct proof based upon Shoenfield’s method.

Several other proofs of the analogous result have been given independently
by Lopez-Escobar [5] and C. F. Kent using a semantic tableaux method for a res-
tricted w-rule in a Gentzen-type system for arithmetic.
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LEMMA 2. Let t(x) be a term of Z,. Then the following sentence is
deducible in Z, from Od(< 4):

(1) (z)(z< 42 > Vylz(e >y TTi(@+1) < A,zt(w))) -
Vylz(s >y TJt@+1) < g (w)),
where v < 4,Y =0 < JYNY < 42, and < 4, Y =T < 4 ,YAN0 F Y (3).

Proof. We show that VyHz(r > yA T1t(2+1) < 4t(»)) is deducible
from the premise of (1) under assumption that Od(< ) holds. If 7] #(y)
< 4ty), it is clear. If t(y) < 4t(y), set w = px(x >yA Tt(x+1)
< 4u»t(®), and hence either TJt(w+1)< 4t(w) or TTt(w)< 4t(y)
If Jt(w)< 4t(y), then set z = yx(r+1 = w) and show z = y. From
here the result follows.

Let # < ,y be a fixed ordering sentence of Z,. Since, for each a, b,
either I—Z” A(a, b) or '—z,, -1 A (@, b), and A (x, y) is provably equivalent
to a primitive recursive predicate in Z,, there is an ¢ such that In(e, 2)
and, for every a, b,

Pri(({e}(a, b))o, [4 (@, B)]) iff ({e}(a, b)), =0,
Prt(({e}(a, b))o, [ 14 (@, B)]) iff ({e}(a, b)), + 0.

Moreover, it is possible uniformly from e to find such indices for
the ordering sentences < 4, as follows. There is an m, In(m, 3), such
that: whenever k = [4(x,¥)], In(¢, 2), and (2), then for each n,
In({m}(k, e, n), 2) and for all a, b, (2) holds with respect to # < 4 ;¥ and
{m}(ky e, n).

Similarly, there is an r, In(r, 3), such that: whenever k = [z < ,v]
and Prf(a, [0d(< 4)]), then for each =, Prf({r}(k, a,n), [0d(< 43)])
Finally, let b be such that In(b,2) and {b}([z < 4¥y],n) = [T < ;9]

LEMMA 3. Let t(x) be a term of Z,. There is a g, In(g, 4), such that if:
(i) k= [#< 49], (i) Pri(a, [0d(< 4)]), (ili) In(e, 2), (iv) In(v,1), (V)
A (x, y), e satisfy (2), and (Vi) if n < 4m, then {v}(n) is a proof number in Z;
of B< 48— VyHe(r >yA Jt(@+1)< 4;t(x). Then {g}(%,a,e ) is a
proof number in Z; of

(3) Vylz(es >yA Tt(@+1) < 4t(x)).

Proof. From (ii) and Lemma 2, we have a proof of (1) in Z,. Now,
we give a proof of the premise of (1) in Z; and hence obtain a proof of
(8)in Z;. If n < An(({e}(n, n)), = O), then {v}(n) is a proof number of
n< A~ Vylz(zr >yaNt(@+1) < 47t(2). I not n< A'n(({e}(n, n)h
# 0), then ({e}(n, n)), is a proof number for ~](7 < ,%) and. hence we

(2)

(2) If one replaces (1) of [6] by formula (1) here, then Shoenfield’s proof of the
completeness of Z* with recursive w-rule is valid.
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easily obtain a proof number for 7% < 7 »Vyﬂw(w >yA Tl (x4 1)
< '47t(2)). It is now easy to find an index ¢ of a function primitive
recursive uniformly in e, v which is a proof in Z; of the premise of (1),
and the definition of g follows routinely.

THEOREM. If B is a true sentence of Z,, then B is provable in Zj.

Proof. By Lemma 1, it is sufficient to prove (3) for a suitable term
t(x) and ordering formula x < ,y (which is a well-ordering). Moreover,
there exists an e, (In(e, 2)), such that (2) holds for # < ,¥ and e. Let a
be a number such that Prf(a, [0Od(< 4)]) and let ¥ = [z < 4y]. Let s
be an index such that In(s, 4) and

{s}(2,k,a,e) =
{g}(k7a7371n{z}({b}(k7”)!{r}(k’a'y'n)’{m}(kyer'n))) if In(e,3),
0 if not In(z, 3).

The number ¢ is given by Lemma 3 and b, 7, m are to be as in the
remarks preceding Lemma 3. By Kleene’s recursion theorem for primitive
recursive functions [3}], p. 75, there is an index ¢, such that In(¢,, 3) and
for all k, a,e, {t,}(k, a, €) = {8}(ty, k, @, ¢). Now one readily proves by
ordinal induction on the order type of v < ,y that {{,}(%, a, €) is a proof
number in Z; of (3) where %, a, ¢, are as above.

REFERENCES

[1] D. Hilbert and P. Bernays, Grundlagen der Mathematik, V. 1, Berlin 1934.

[2] 8. C. Kleene, Introduction to metamathematics, Princeton 1952.

[3] — Euxtension of an effectively generated class of functions, Colloquium Mathema-
ticum 6 (1958), p. 67 - 78.

[4] G. Kreiser, J. Shoenfield, and Hao Wang, Number theoretic concepts and
recursive well-orderings, Archiv fiir mathematische Logik und Grundlagenfor-
schung 5 (1960), p. 42 - 64.

[6] E. G. K. Lopez-Escobar, Remarks on an infinitary language with constructive
formulas, The Journal of Symbolic Logic 32 (1967), p. 305 - 318.

[6] J. Shoenfield, On a restricted w-rule, Bulletin de 1I’Académie Polonaise des
Sciences, Série des Sciences Mathématiques, Physiques et Astronomiques, 7
(1959), p. 405 - 407.

THE UNIVERSITY OF IOWA

Regu par la Rédaction le 6. 3. 1970



