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1. Introduction. Let X be a set and G a collection of endomorphisms
of X which is closed under the operation of composition. We can put
a quasi-ordering on G by setting f < g when there exists ae@ such that
fa = g; this is the inirinsic quasi-order for G. A question which has arisen
In mountain climbing [6], geometry [7], and universal mapping problems
[1] and [4], is whether G is a directed set in this quasi-order. (Recall
that @ is directed if, for every f, g @, there is an he@ with f < h and g < h;
in the present setting, this means there are a, f¢@ such that fa =g¢g8.)

Let X be a compact metric space, and let C(X) be the collection of
continuous maps taking X onto X with the intrinsic quasi-order and the
metric induced by the sup norm. Recall that a Peano continuum is a con-
nected, locally connected compact metric space.

THEOREM 1. A mnon-degenerate Peano continuum X 1is topologically
an interval if and only if C(X) contains a dense directed subset.

The “only if” statement of Theorem 1 is proved in [5], and examples
showing that C([0, 1]) is not itself directed are presented in [3] and [6].
An interesting question is whether C(X) is directed if X is the pseudo-arc
(see [4] for definition). (P 771)

Let Y be an oriented PL manifold without boundary, and let M (Y)
be the subset of C(Y) consisting of PL maps of degree one.

THEOREM 2. M (Y) 4s directed in its intrinsic quasi-order if and only
if Y 48 topologically a circle.

The “if” statement of Theorem 2 is Theorem 3.3 of [1].

2. Preliminaries. Our principal tool will be the double graph of a pair
of maps, which was introduced in [3] and [6]. If X, and X, are topolo-
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gical spaces, let C(X,, X,) be the collection of continuous maps taking
X, onto X,. For f, geC(X,, X,) define the maps fx g: X, X X, > X, XX,
by fxg(®,y) = (f(x), 9(y)), and let Ax = {(x,»): ve X} =« X x X; then
the double graph of f and g is the subset [f, g] = (fx¢)~*(4x,) of X, X X,.
We shall use the following properties of double graphs, the first of which
follows immediately from the definition.

(1) Let f, g, @, Be C(X); then fa = gf if and only if a X f(4x) = [f, 9]

(2) If f,geC(X) and U is an open meighborhood of [f, g] in X XX,
then there exist neighborhoods V; of f and V, of g in C(X) such that [f’, g']
c U for every f' eV, and g’V ,.

Proof. Note that fx g(X XX — U) is a compact set missing A4x;
if ', g’ are close f, g, then f' X ¢'(X X X — U) also misses 4. which means
that [f’, 9'] = (f' x¢') ' (4x) = U.

Let n, and =, be the projections of X X X onto its first and second
factors. We will say that a set K c XX X is full if =,(K) = n,(K)
= X. It is immediate that

3) if f,9,0,BeC(X) and fa = gf, then some component of [f,g]
18 full.

In the next proposition, 7" is the i-skeleton of a simplicial complex T.

(4) If Y is an n-manifold, T is a triangulation of Y, and f, geC(Y)
are linear on simplexes of T and in general position, then [f, g1— (|T™ | X
X |[T™ ') is an n-manifold.

By the general position of f and g,

dim {[f, gIn(IT* X [T" )} < n—2;

thus [f, g] is a pseudomanifold.

Proof. Since [f, ¢dy] is just the graph of f, it is clear that [f, g] is
an n-manifold if ¢ is injective. Thus [f, g]— (Y X |T"7!|) is an n-manifold
for arbitrary g, and the conclusion follows from symmetry. )

We will denote the maximum open subset of [f, g] which is an n-
manifold by [f, g]*.

3. Proof of Theorem 1.

LEMMA. Let X be a non-degenerate Peano continuum which is mot
homeomorphic to [0,1]. Then there are maps f, geC([0,1], X) such that
no component of [f, g] is full.

Proof. Since X is not homeomorphie to [0, 1], it has at least 3 distinct
non-cut points [2], which we will call a,, a,, and a,. For any feC([0, 1], X)
we define A;(f) = f'(a;), and we say that two points of (J;A4,(f) are
adjacent (with respect to f) if there is no point of | J;4;(f) between them
on [0,1]. We will construct f, geC([0,1], X) such that some point of
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A,(f) is adjacent (w.r.t. f) to a point of 4,(f) and no point of A,(g) is
adjacent (w. r. t. g) to a point of A4,(g).

Suppose for the moment that we have such a pair f, g, and that
some component K of [f, g] is full. Let x,¢ A,(f) and z,¢ A,(f) be adjacent
(w.r.t. f), and suppose, for convenience, that x, < x,. It follows from
the fact that K is connected and full that =,(L) = [x,, #,] for some
component L of Kna;'([x,, ®,]). If (x,,y,) and (x,,y,) belong to L,
then y,¢ A,(g) and y,¢ A,(g), since L < [f, g]. By the choice of g, it follows
that there is a point y,e A,(g9) between y, and y,; since L is connected
there is a point (z3, ¥;) eL. But since L < [f, g]na;* ([2y, ,]), this means
that z,¢ A4(f) is between x, and x,, contradicting our choice of x, and xz,.
Therefore, no component of [f, g] is full.

To construct g, take a Cantor set 7' in [0, 1] and a mapgeC([0, 1], X)
such that ¢(T) = X. It follows from the continuity of ¢ that there are
only a finite number n»(¢) of pairs of points x,, #, such that x,e¢ 4,(¢p),
@,¢ Ay(p) and o, is adjacent (w.r. t. ¢) to @,. Fix such a pair x,, x,, sup-
posing for convenience that z, < ®,. Let (z,, ;) be an open interval in
[®,, ;] — T, and let  be a point in (z;, #,). Since X — {a,} and X — {a,}
are connected, they are arc-connected [2], and we can find maps ¢,:
[%;, 2] > X —{a,} and ¢,: [z, 2;] > X —{a,} such that ¢;(z;) = ¢(z;) and
@ () = a3 (¢ = 1,2). Defining ¢’: [0,1] > X by

p(t) for te[a}; z;],
@' (1) ={@i(t) for te[a;, 2],
a(t)  for te[w, a;]

gives us a map ¢’ C([0, 1], X) with ¢'(T) = X and n(¢’) < n(p), and we
induct on n(¢) to get g. The map f is obtained in a single step by the
process above.

Proof.of Theorem 1. Let X be a non-degenerate Peano continuum
which is not homeomorphic to [0,1]. The lemma gives us maps f*, g*
¢ C([0, 1], X) such that no component of [f*, g*] is full, and we set f = f*¢
and g = g*¢, where ¢ is any map of X onto [0, 1]. From the observation
that ¢ X @([f, g1) < [f*, 9*]1 and ¢x; = 7;(p X @), it follows that no com-
ponent of [f, g] is full. We will now show that there are neighborhoods
V,of fand V, of g in C(X) such that no component of [f’, g'] is full if
f'eV;and g'eV,. By (3), this suffices to prove the theorem.

Suppose that the neighborhoods described above do not exist. Then
there are sequences f; — f and g; — ¢ in C(X) such that some component K,
of [fi,g;] is full. We can pick a subsequence {K;} of {K;} such that
lim inf K,.n = lim sup Kin = K ([2]). The limit set K is connected and full,
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and it follows from (2) that K < [f, ¢g], which is impossible by our choice
of f and g.

4. Proof of Theorem 2. Suppose Y is a triangulated n-manifold,
n > 2, and let X~ be an n-simplex in the triangulation of Y. The simplex
2 is PL homeomorphic whith the n-dimensional cube I", and for conve-
nience we will identify 2 with I™ in our construction. Represent I" as
a product I"! x [0, 1], choose a point a in int 1"}, and set a; = (a,%/8) ¢ I",
t=1,...,7. We define fe C(Y) in the following manner: f(x) = « for
zeY —int(I* ' x [0, 3/8]), f(a,) = a;, and f is linear on segments a,z
for e d(I™ ' x [0, 3/8]). Similarly, g is defined by g(z) = « for xeY —
—int(I"'x [5/8,1]), g(a;) = a,, and ¢ is linear on segments a,z for
xed(I"'x [5/8, 1].

The maps f and g are clearly in M (Y), and are in general position.
Let K be the component of [f,g] containing A4, ;». K contains
an (n—1)-sphere 8 = Adym-1,11;) and a simple closed curve I =
(ag, a3)(as, ag) (as, ag) (az, as) (as, a;) which intersect transversally at the
single point (a4, a,). It is easily seen that SUJ < [f, ¢1%, and it follows
from this that H, ,(K, Z,) contains k41 linearly independent elements
with representations lying in [f, g]%, where k is the number of elements
in a basis for H, ,(4y,Z,). There is, therefore, no map of 4, onto K
of degree one, and thus no map ¢: 4, - K with degn;p =1; the theorem
follows from (1).

Let ¢'(Y) be the component of C(Y) containing the identity map.
The set C’(Y) is closed under the operation of composition, and we consider
it with its intrinsic quasi-order.

COROLLARY. An oriented PL manifold Y is topologically a circle if
and only if C'(Y) contains a dense directed subset.

Proof. This follows from (2) and the observation that [f, g] has
a regular neighborhood, where f and g are the functions constructed
above.
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