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A UNIVERSAL CONVEX SET IN EUCLIDEAN SPACE
BY

RYSZARD GRZASLE WICZ (WROCLAW)

In 1935 S. Mazur posed the problem whether there exists a symmetric
convex body @ in R?® such that every symmetric convex body in R? is
affinely equivalent to the intersection of @ with some 2-dimensional
subspace (Problem 41 of The Scottish Book). This problem was solved
in the negative by Griinbaum [3] (see also Bessaga [1]).

Professor C. Ryll-Nardzewski has asked a relatéd question whether
there exists a compact convex set @ in R® such that every convex body in R?
is affinely isomorphic to the intersection of Q with some plane.

In this note we present an example of a compact convex set Q in R™*?
(n = 1) such that every closed convex subset of the unit ball B of R"
is obtained as an intersection of Q with some n-dimensional hyperplane
of R"*2,

Let 22 denote the space of all closed non-empty subsets of B endowed
with the Hausdorff distance

dist(4,, 4;4) = max (supd(w, 2)y Supd(y, 1))7
o . acd; yedq
where d stands for the Euclidean metric dz,y) = le—yl =V<z—y, v —y)
in R". It is well known that 2% is compact. It is also easy to see that if
dist(4,, 4,) >0 and d(»,,2,) >0 as n—> co with =z, € 4, €25, then
o€ A,.

LEMMA. The set € of all convex sets in 2F is a locally arcwise connected

melrec conttnuum.

Proof. Let a sequence A, of elements in € converge to 4, € 2% and
suppose @ € A,. Then, clearly, there exists a sequence (z;) with x, € 4,
converging to z. This implies that if #,y € 4,, then re+(1—r)y € 4,
for every r (0 <r<1), so 4, is convex, proving the compactness of €.

Now we prove that € is locally arcwise connected. It is sufficient to
show that for any two distinet A,, 4, € ¢ there exists an arc 4,4, with
diameter less than or equal to dist(4,, 4,) (see [2], p. 242). We put

=t4;+(1-0)A, = {ty+(1—t)z:xe A, yec A} e¥.
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Let x € Ay, y € A; and let ©, € 4y, ¥, € A, be such that
d(z,y,) < dist(4y, 4,) and d(y, x,) < dist(4,, 4,).
For 0<t<s8<1 we have

Ly (= Re= s

= [I(8 =) (y — o)l < |8 —#|dist(4,, 4,)
and, analogously,
alty +(1—t)z, 4,) < |s —t|dist(4,, 4,).
Thus for ¢, 8 € [0, 1] we have
(1) dist(4,, 4,) < |s —t|dist(4,, 4,).
Let x,, 2, € A, and y,, ¥ € A, be such that

supd(y, 4,) = d(y,, 4o) = d(y1, @,)
ved,

and
szpd(w, A,) =d(xy, A,) = d(03,Ys).
zed,

Then
sup d(ty+ 1-t)=, Ao) = d(‘?/1+(1 —1)a,, Ao) = td (@1, Y1) -

zeAdg,yed;
For any y € A, we have [|(ry+ (1 —7)ys) — 4| = llys —,ll for every
re[0,1], s0
(2) Y —Ysy Ys—a9) > 0.

For any x € A, there exists y, € A; such that d(x, y;) < d(x3, ¥s).
Now

(ys —¥s) + (Y3 — @5) + (23 —2)|I* < llys — 412,
and so

I9s — Yo+ @3 — @I+ 2 Y — Y2y Yo — T5) < 2 (Y —Tg, & — @) -
Since (Y3 —Ya, Y3 —,) > 0, we have
(3) Yy —g, 8 —&> = 0.
By (2) and (3),
supd(z, 4) > d(as A)

= inf [0y —y,) + (1 =) (2 —@5) + (Y2 — T,) | > tllys — 4l
d zedo,ved,
an

dist(4,, 4,) > ma'x(td("’i’ Y1), td(z,, ya)) = tdist(4,, 4,),
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80
dist(4,, 4,) = tdist(4,, 4,)
and, analogously,
dist(4,, 4,) = (1 —t)dist(4,, 4,).
Therefore, by (1), for any &, ¢ e [0,1] we obtain
dist(4,, 4,;) = |8 —t|dist(4,, 4,),

g0 the arc 4,4, = {4,: 0 <t<1} has diameter less than or equal to
dist(4,, 4,)-

THEOREM. For every n > 1 there exists a compact convex set Q@ in R™*?
such that every closed subset of the unit ball B of R" can be obiained as an
intersection of Q with some n-dimensional affine subspace of R"+2,

Proof. By the Lemma and the Peano theorem ([2], p. 246), there
exists a continuous function y from the interval [0, 1] onto €. For ¢t € [0, 1]
we write

C, = y(t) x {(cost, sint)} =« R"+?
and put
Q = conv | J .

tefo,1]
The set @ is compact. Indeed, let

Bince ke, |l < V2, there exists a subsequence &, of &, converging to
some element
Ty = (Dgy vey Ty COBY,, 8iDty).

Obviously, t,. —t, and Y, = (Tpy ..., Tp) > Yo= (g, ..., #F) in R".
We have y,. € y(f,) and dist(y(f.), y(t)) > 0. By the remark preced-
ing the Lemma this implies that y, € y(%,), so &, € Q.

Since y is an onto mapping, for every convex subset D of B there
exists ¢ € [0, 1] such that y(¢) = D and for the n-dimensional affine sub-
space H, = R" x {(cost, sint)} we have

QnH,; = D X {(cost, sint)}.
Indeed, if @ € QnH,, then there exist elements &, € 0, and positive

real numbers e, (¢ =1,...,m) such that Yo, =1 and ® = Y ay;. In
particular,

Za,(cost,, sint;) = (cost, sint).

By the strict convexity of the unit disc in R? this implies (cost,, sint,)
= (cost, sint), i.e. ¢, =¢ for ¢ =1,...,m. Thus = eC; X (cost, sint).
Since the reverse inclusion is obvious, the proof is complete.
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Let us note that, by an easy application of the Peano theorem to-
gether with some of the arguments above, the (non-convex) set

P = U {(@y, 24, 8): (w1, 25) € p(t)} = R
2t I

satisfies the following condition: _ ) _
Every closed convex set in R? with diameter less than or equal to 1
can be obtained as the intersection of P with some plane.
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