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GENERALIZED ALMOST PERIODIC FUNCTIONS
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1. Introduction. The almost periodic functions of Bohr have been
generalized by, among others, von Neumann, Bochner, Stepanoff, Weyl,
Besicovitch, Maak, and more recently, de Leeuw and Glicksberg. The
following paper (!) is intended to clarify the interplay between these
various ideas, as well as to extend them somewhat.

Definition 0. Let L be a locally convex, complete (closure of each
totally bounded set is compact) linear topological space with neighbor-
hood basis  at 0. For any set X, B(X, L) is the set of all functions
f: X — L such that f(X) is totally bounded. For U ¢#, set U' = {fe B(X,L):
f(X) e U}. Then %' = {U’: Ue#%} defines a locally convex, complete
linear space topology for B(X, L). Now let § be a topological semigroup
with identity e. For fe B(S, L) and aeS8, let f,(s) = f(sa) and ,f(s) = f(as)
for all seS. Finally, CB(S, L) is the subset of continuous functions in
B(S, L).

The following, which is a generalization of a theorem of Veress about
complex-valued functions, is basic to section 2. The key to the proof
below was found in an unpublished proof of Veress’ theorem given by
Yood.

THEOREM 1. Let {f,: yeG} =« B(X, L). Then {f,} is totally bounded
in the ' topology if and only if \J{f,(X): y«G} is totally bounded and for
each U % there is a partition {A,, ..., A,} of X such that if x,yeAd,, then
[f,(@)—F,(y)]1eU for all yeG.

Proof. Necessity. Let Ue#Z. Pick VeUsothat V4+V—-V—V < U;
then pick We# so that W+W < V. There are y(1),..., y(r)eG, such
that {f,} =« U{fyxy+W':4 =1,...,7}, and for each ¢ there exist
p(t,1),...,p(,s;) such that f,,(X) < Ufp(,))+W:j=1,...,8} So

(1) The material in this paper comprises part of the author’s Ph. D. dissertation,
which was submitted to the Graduate School of the University of Oregon in 1966.
The author wishes to express his gratitude to his adviser, Professor Bertram Yood,
for his advice and encouragement during and after the preparation of the original
work.
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U{f,(X): yeG} =« U{fyy(X)+W: ¢ =1,...,7}
< U{U{p("’ﬂ)+W+W J=1,..,8}: i=1, '“;r}
< U{p@,j)+ V3.

Thus the set | {f,(X): yeG} is totally bounded.

Now for each pair (¢,j) let E(i,j) = ,,'il(p(i,j)—l- V). Consider all
sets of the form F(1,j,) n... n E(r,j,), where j;e{1, ..., 8;}: make them
disjoint and label them A4,, ..., 4, ; these partition X. Finally, let x, yeA,;
for any y e, find ¢ such that f,—f, ¢ W = V' and observe, since z and
y are in an FE(z,j) for some j, that

fy(m)—fy(y) =fy(w)_fy,b(w)_‘_fy,b(w)_fyl(y)+fy1(y)_fy(y)
e WH(p(@E, )+ V)—(pG,H)+V)—- W V4+V—V—-V < U.

Sufficiency. Let Ue#. Pick Ve# so that V—V < U; then find
a WeU such that W+ W < V. By hypothesis,

(1) there exist p(1),...,p(n)eL such that, for all ye@G, f,(X) = (p(1)+
+W)u...uU(p(n)+W), and

(2) we can decompose X into 4,,..., 4, so that z,yeA; implies
that [f,(x)—f,(y)]e W for all yeG.

Now let yeG. For each ie{l, ..., m}, find an element y;eA4;. Using
(1), pick k,, ; such that f,(y;) «(p (%, )+ W). Then by (2), if zeA;, we have

£,(@) ef, W)+ < (p(k, )+ WAW) < (p(k,, )+ ),

so that f,(4;) = (p(%,;)+ V). By this process we can define, for each
¥, an m-tuple w(y) = (k,,1, ..., b, m) Where f,(4;) < (p(k,)+ V). Enume-
rate these m-tuples; say they are indexed by {1,...,8} (where s < n™).
Next, for each je{l,..., s}, let y; be any y <G for which =(y;) is the j-th
m-tuple in this enumeration.

Then for any y<G pick y; so that =(y;) = n(y). For <X,z is in,
say, A;, and since y and y; have the same m-tuple, both f,(4;) and
f,,?,(Az-) are subsets of p(k, ;)4 V. Therefore

fy @) —F,, (@) (p (b,,)+ V) —(p(k,,) + V) = V—V < U;
thus f,— fyje U’, which implies that
{fyr veGl e (f,,+U) V... U(f,+T).

2. Two definitions and some relationships.

Definition 1 (von Neumann [13], de Leeuw and Glicksberg [2]).
AP1(8, L) is the subset of CB(S, L) such that feAP1(8, L) if and only
if {f,: ae8} is totally bounded in the %’ topology.
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Using Theorem 1, one can easily show that replacing {f,: aeS} by
{of: €8} or {,f,: a,beS} yields the same set of functions.

Definition 2 (Maak [9]). AP2(8, L) is the subset of CB(S, L)
such that fe AP2 (S, L) if and only if for each U % there exists a partition
P(f,U) ={4,,..., A,} of 8 so that if a,xb,, ayybye A, for some a,, b,
then [f(cxd)—f(cyd)]e U for all ¢, deS.

It follows from Theorem 1 that AP2(S,L) = AP1(S, L), and that,
for a group G, AP2(S,L) = AP1(S, L); in the latter case we write
AP(@, L) for either set and observe that AP (G, L) has been intensely
studied [13]. When L is the complex number field, we write just AP1(8),
AP(@), etc., as appropriate.

Definition 3. For § as in Definition 0, S, will signify the semigroup
S given the discrete topology.

We note that Definition 2 differs from Maak’s definition of almost
periodic functions only in the following two particulars: ‘

(i) the domain of the functions considered here is given a topology,
and '

(ii) the range of the present functions is more general.

For the discrete semigroup 8,, difference (i) is irrelevant and the
modifications to Maak’s work connected with (ii) are routine (for an
indication, see Iseki [7]). Thus we have.:

THEOREM 2 (Maak [9]). The translation operators {T,: aeS} on
AP2(8,, L) given by T,(f) = f, are one-to-one mappings onto AP2(8,, L)
and so generate a group (with respect to composition) G* of operators onm
AP2(8,, L). The mapping a — T, is a homomorphism of 8, into G@*. Moreover,
there is a one-to-one linear mapping f— f* of AP2(8S,, L) onto AP(G*, L)
given by

fY(T) = Tfe) for all TeG*,

where f(x) = f*(T,) for all weS,.
(Comment: there is a slip in the proof of Theorem 7, p. 53, [9], but it
can be corrected by methods used in that paper.)

In addition to Theorem 2, all results of [9] which are appropriate
will be taken for granted as they apply to AP2(S,, L):

Definition 4.Set A* = {f*: feAP2(S, L)}. (Note that A* = AP(G", L),
and if § is discrete, then 4* = AP(G*, L).) Then let @ be the group G*
given the weak topology induced by the functions in A*.

With this definition, the homomorphism a — 7, from § into @ derined
in Theorem 2 is continuous. Further, it is clear that AP(G, L)< A*.
The interesting fact is that AP(@, L) = A*. When this is established,
we shall have a nice extension of Theorem 2 for the topological semigroup 8.
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In [9], Maak proves that whenever fedP2(S,, K) (K = complex
numbers), there exist functions f(-, y) on 8, determined by the following
properties:

(i) f(-,y)eAP2(8S,, K) for each ye8,;

(ii) f(z, e) = f(x) for every xeS,;

(iii) f(za, ya) = f(x,y) for all a, z,yeS,.

The proof runs along the following lines. As a result of a complicated
combinatorial process it is found (Theorem 5, p. 43, [9]) that if x, a8,
and ¢ > 0, then there is an a’e8, such that

|f(cad)—f(cxa'd)| < ¢ for all ¢, deS,.
Thus, if ye8,, one can find, for any ¢ > 0, a y' €S, such that

|f(cd)—f(cyy’'d)| < e for all ¢, deS,.

Using this y’ the function f,(-,y) is defined by f.(z,y) = f(zy’).
It is shown that as ¢— 0, the functions f,(-, y), so constructed, form
a Cauchy net in the uniform norm and hence converge to a function
f(+,y), which turns out to have the stated properties.

This function takes the place of the function f(xzy~ ') which can be
defined when S, is a group, in the sense that, if y is invertible, then
f@,y) =flay ™, yy™") = flay™, e) = flay™).

Just as f(z, y) takes the place of f(xy~') in [9], we define a function
to take the place of f(y 'x).

Definition 5. If feAP2(S,, L), then there exist functions f'(-, y)
from §, to L uniquely determined by the following properties:

(1) f'(-,y)eAP2(8,, L) for each yeS,;

(ii) f'(x, e) = f(x) for every xeS,;

(iii) f'(ax, ay) = f'(z, y) for all a, z, yeS,.

(The existence of these functions is demonstrated in a manner completely
analogous to the methods of [9].)

ProPOSITION 1. If fe AP2(8,y, L) and aeS8,, then f'(a, -)e AP2(8,, L).

Proof. By Theorem 2, f*<¢ AP(G*, L); so, by the theory of almost
periodic functions on groups, f*(T7'T,)e AP(G*, L) (as a function of T),
so if we set g(a, y) = f*(T,;'T,), Theorem 2 shows that g(a, -)e AP2(S,, L).
On the other hand, for fixed y, f*(T,'T)e AP (G, L), so again by Theorem
2, (1) (-, y)eAP2(8,, L); but (i) and (iii) of Definition 5 are immediate
for ¢(-,y), so g(=,y) =f'(z,9).

Now we can proceed to consideration of the topological semigroup S.

LemMmA 1. If feAP2(S, L), then {,f,:a,be8} is an equicontinuous
family of functions.
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Proof. With the help of Theorem 1, this is routine.
COROLLARY. If feAP2(S, L) and a,beS, then ,f,e AP2(S, L).

- LEMMA 2. If feAP2(8S, L) and a,beS, then f(-,Dd), f(a,-), f'(-,b)
and f'(a, ) are all members of AP2(S, L).

Proof. Because of results in [9] and Proposition 1, it suffices to
show these functions are continuous.

(a) In [9], the function f(-,d) is constructed as the uniform limit
of functions of the form f,., each of which is continuous by Lemma 1.

(b) To see that f(a,-)eAP2(8, L) let y,eS and Ue#%. Pick Ve
such that V4+V—V+V4+V—V—V < U. By Lemma 1 there is a neigh-
borhood N of y, for which ye¢N implies

[f(cyd)—f(cy,d)]eV  for all ¢, deS.
By Theorem 5, p. 43, [9], there exists an a’¢S such that
[f(cad)—f(ca'y,d)]eV  for all ¢, deS.
By definition [9] of f(a, y), there exists a y'eS such that
[f(ed)—f(eyy'd)]eV  and  [f(a,y)—f(ay')]eV
for all ¢, de8S; similarly, there is a y,eS with the property that
[f(cd)—f(cyoyod)]eV and  [f(a,yo)—f(ayo)leV
for all ¢, deS. Thus if yeXN,
[f(a, y0)—f(a,9)]
= [f(a, o) —f(ayo)1+ [f(aye) —f(ay')1+ [f(ay') —f(a, y)]
e V+ [f(ays)—f(@'yoyo) 1+ [f(a'yoyo') — f(a") 1+ [f(a")— fla'yy') ]+
+[f(a'yy' ) —f(a'yoy) 1+ [f(a'yey’)—flay)]—V
e V4 V—-—V4+V4+V—-V—-VcU.

(¢) The proofs for f'(a,-) and f'(-,d) are essentially the same.

LEMMA 3. If f* e A* (i.e., if feAP2(8, L)) and ReQ@*, then the functions
frs nf* and H, where H(T) = f*(T™"), are all members of A*.

Proof. (a) For TeG*, fp(T) = f*(TR) = TRf(e) = (Rf)*(T).

(b) Suppose first that B = T,T; ', a, beS. By Theorem 2, it is enough
to see that (as a function of z) zf*(T,)eAP2(S, L). To this end, consider
the function .7 f*(T,) defined for all x,yeS.

(i) For fixed y it is clear that TaT;lf* e AP(Q*, L), so by Theorem 2,
TaTglf*(Tz)eAPZ (84, L) (as a function of x).
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(i) 7" (T) = fH(T,T,) = T.T.f(e) = f(az) = of(@).

(iii) 72! (Te) = N (TT T T T,) = fH(T,T°T,) = T,T5 (T,

Thus by definition 5, r r-'f*(T,) = (of)’ (%, y), and so by the corollary
to Lemma 1 and Lemma 2, gf*(T,) = p_r;'f* (T;) = (of)' (@, b)e AP2(8, L)
(as a function of ).

Now suppose the Theorem has been proved for all T<G* of the form
T, =T, Tbk ... T, Tb1 , and consider an element of the form T 115 We
can write T}, , = TkT T;?! for some T,eG* and a, beS. Then

Tk+lf (T) = fY (T T, T5'T) = ka (T.T5'T) =TaTgl(ka*)(T)§

and now the induction hypothesis and the first part of the proof apply.
(¢) It is enough to show that heAP2(8, L), where h(x) = H(T,);

h(@) =f(T7") = T7'f(e) = fle, @).

COROLLARY. G is a topological group.

LemmA 4. A* = AP(G, L).

Proof. Let FeAP(G, L) and let T: # — T,. By Theorem 2, f = FoT
eAP2(8,, L), so as the composition of continuous functions, fe AP2 (8, L).
But again by Theorem 2, f* = F.

A summary of the results so far is

THEOREM 4. Let 8, Sy, L and AP2(8, L) be as in Definitions 0, 2
and 3. Then there is a topological group G of one-to-one transformations
of AP2(8,, L) onto itself generated by the right translation mappings {T,: a S}
such that the mapping a — T, is a continuous homomorphism of 8 into

G. Moreover, there is a one-to-ome linear mapping f—f* of AP2(S, L)
onto AP(@, L) given by

f*(T) = Tf(e) for all Te @,

where f(x) = f*(T,) for all zeS.

As noted above, for a group G, AP1(G, L) = AP2(@, L). For semi-
groups this is not the case; in [2] it is shown that all semicharacters
(bounded multiplicative functionals) belong to AP1(S), and that all
semigroups examined therein admit semicharacters taking on values of
modulus less than 1.

PROPOSITION 2. If 8 admits a semicharacter y +# 0 such that |y(x)| < 1
for some x, then AP1(8S) # AP2(S8).

Proof. Since y # 0, y(e) = 1. Suppose ye AP2(8). Find n such that
ly(@™)] = |y(@)|"< 1/2 and set y = a". Now let ¢ =1/2 if y(y) = 0 and
e = |y(y)| otherwise. As in [9], there exists y'eS such that

e> [y(e)—y@y) =1~ @I @,
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which is impossible if y(y) = 0; so ¢ = |y(y)| and we have

1> |ly@)l =y @)l;

but |y(y)|~' > 2, so |y(y’)| > 1, which is impossible, since semicharacters
are bounded.

In a more restricted setting it is possible to make the relation between
AP1(8S) and AP2(S) much more definite. Let us say that Restriction 1
is satisfied by a semigroup § in case it is commutative and contains an
infinite set X with the property that if a,ceS, then {wxeX: xc¢Sa} is
finite. (E.g., cones in K, , finitely generated commutative semigroups.)

LEMMA 5. Let 8 satisfy Restriction 1 and let fe AP1(8). Then the closure
of {f,: xeX} meets AP2(S).

Proof. (Note that here the %’ topology is that provided by the
sup norm ||f|| = sup{|f(s)]: seS}.) Since {f,: vxe8} is totally bounded, it
contains a Cauchy sequence {f, } which converges to a function geCB(S).
We show that geAP2(S).

Let ¢ > 0 be given. By Theorem 1 there is a partition {4,,..., 4,}
of 8 such that if 2, we 4;, then |f,(2) —f,(w)| < ¢/3 for all s¢8. Now suppose
ar, ayeA,;, and let ceS. Find n such that z,¢c = pa for some peS and
lg—f., || < /3. Then

g (cx)— g(ey)| < lg(cx)—f,, (@) + | f,, (c) — fo, ()| + | fa, () — g (cy)]
< ¢[3+ | fp(aw)—fp(ay) +&[3 < &;
ie., {4,,..., 4,} is a partition P(f, ¢) for Definition 2.

Theorem 4, p. 49, [9], states that if fe AP2(S,), >0, and TeG*
then there exists an element aeS, such that

[ Tf(z)—T,f(x)| < e for all xeS,.

As an easy consequence of this, if fe AP2(8), then ||f*|| = ||f|] and
f> 0 implies f* > 0. These facts will be useful later.

THEOREM 5. Let S satisfy Restriction 1 and fe AP1(S). Then f = h+k
uniquely, where he AP2(S) and inf{|k,||: xS} = 0.

Proof. Lemma 5 provides a function ge AP2(S) and a sequence
{x,} = 8 such that |f, —gll > 0. Since (I7'g)" = (_g*)Tx, the sequence

{(T-'9)"} must contain a convergent subsequence {1z} 9)*}. Then {T;’,1 g}
also converges, say to heAP2(S). Set k¥ = f—h; then

leg)ll = I(f— T g+ T2 9— h)sl
< fzy—gll+ 1Tz 9— Bl - 0.

Uniqueness follows at once from Theorem 3, p. 42, [9].



128 J. W. McCOY

Because of Theorem 5, we can write AP1(8) = AP2(S)®N(S),
where N(S) = {feAP1(S): inf|f,|| = 0}. In case S is the non-negative
reals, N(8) = C,(8) and this becomes a result of Fréchet [3]. (In case
S = {(x,y): x,y > 0}, the function f(x, y) = ¢~® shows that N (8) # C,(S8).)

Each commutative semigroup S admits an invariant mean for CB(S);
i.e., a linear functional M such that ([6], p. 231)

(1) M(Q1) =1,

(2) M(f,) = M(f) for all feCB(8) and all xS,

(3) if £ 0, then M(f)> 0.

LEMMA 6. Let 8 be any commutative topological semigroup and let
M be as above. If M* is defined on AP(G) by M*(f*) = M(f), where
f—f* and G is as in Theorem 4, then M* is the usual mean value for AP(G).

Proof. Conditions (1)-(3) characterize the usual mean among linear
functionals on AP(Q); it is clear that M" satisfies (1) and (3).

Ad (2). Let f*¢AP(G) and T = T,T;'e@G. Then if g — f7, a simple
calculation shows that ¢g(x) = f(xa,b). Now f(za,bd) = lim f(xab,), and

e—0

the convergence is uniform ([9], p. 45), so
M*(fr) = M(g9) = M(limf,,) = lim M(fy) = M(f) = M*(f*).

THEOREM 6. With S and X as in Restriction 1, and N (S) as above,
N(8) = {feAP1(S): M(|f]) = 0}.

Proof. It feN(S), then M(|f]) = M(|f.]) < |f.]| = 0 for appropriate
x’s. Now let feAP1(S), M(|f]) = 0. By Theorem 5, f = h+k, where

he AP2(8) and keN(S); then M(|h|) < M(|fl)+ M(|k|]). Therefore
M*(|h|*) = M(]h]) = 0; but |h| > 0 implies |2|* >0, so by Theorem 7,
p. 452, [13], |A|* = 0. Thus |h| =0, so h =0 and f = k.

Remark. This is another result of Frechet when 8§ is the non-negative
reals.

3. Algebras of generalized almost periodic functions. In the uniform
norm, with convolution multiplication, AP (&) is a Banach algebra whose
structure is known in detail ([10], [15]). For the case G = R, the real
line, a number of metrics have been defined by Stepanoff, Weyl, and
Besicovitch ([1], Ch. II) under which AP(G) is a normed linear space
(not necessarily complete). Analogues of these metrics can be defined
on AP(G, A), where G is a locally compact group and A4 is a Banach
algebra; in this section we take a look at the Banach algebras formed
by completing AP(G, A) in these new metrics.

Let G and A be as just above. There is a compact group G5, the Bohr
compactification of G, and a continuous homomorphism =n: @ - G5 with
7 (@) dense in Gy ([8], p. 168). Grove [4] shows that AP (G, A) is isometri-
cally isomorphic (as a Banach algebra) with C (G5, A) under a correspond-
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ence f— f*, where it is implicit in the isomorphism that f*(x(z)) = f(»)
for all xe@G. It is also noted therein that for fe AP(G, A),

M(f) = [y,
Gp

where M is the mean value [14] for AP (G, A) (we shall use Greek letters
for elements of G'5). In light of this we have the convolution

Frg(s) = My(f(st™)g(t) = [ fMm(s)y™)g" (»)dy
Gp

whenever f, ge AP (G, A) U AP(G) and the product f(st™')g(f) makes sense.
It is shown just as for AP(@) that fxge AP(G, A).

Definition 6. Let 8 be any compact subset of G (not necessarily
a semigroup) with A(8) > 0 (Haar measure), let #° be any sequence of

compact subsets of G each having positive measure, and let 1 < p < oo.
Then for feAP(G, A) we define

Ifllse = sup{[1/A(8) [ IIf(5)If%ds]": a, beG},

b
Ifllwe = limsup {||f||lsp: Se#7},

flze = (MLUFOED" = ( [IfG)E)

Gp

(where || || denotes the norm in A).

In case @ = R and A is the complex numbers, these become, with
suitable choices for the compact sets, the metrics of Stepanoff, Weyl,
and Besicovitch, respectively. Minkowski’s inequality shows that they
are norms on AP(G, A) in any case. Also, since ||f*gllco < ||flle llgllc, the
usual proof shows that fxgeAP(G, A) whenever feAP(G) U AP(G, A)
and geAP(G, A).

THEOREM 7. If || ||y denotes any of the morms of Definition 6 or the
sup norm, then

(1) Al < Iflly < 1flloos
(ii) /% gllw < max (|| fllzglly, 1fllxlgllz).

Proof. (ii) First consider fe AP(@) and 0eL, (@), and let aeGg and
¢ > 0. Since f* if left uniformly continuous on Gy, there exists a neigh-
borhood y of =(e) such that if 6~ 'aey, then |f"(a)—f" ()| < &/]|0]lh(S),
and because x((#) is dense in Gy, there is a ce@ such that =(¢)eay, so
for all se@,

A (7 (8)a) — f* (w(8) 7 (0)] < e/l1Blloo ().

Colloquium Mathematicum XXII.1 9
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Thus
f[f" (w(s)a) O(s)|ds
8

< flf"(n(s)n(c))ﬂ(s)lds+ f |7 (m(8) 7 (e) — " (=(8) a)| |6(3)] ds
S S

< [1f(s)(s)| da+e.
S

Now let 1< p< oco; for a,bel and &> 0, take 6eCB(aSh) with
0ll, <1 (¢ =p/(1—p)). Then

| [If*g(®)lli0(s)ds |
aSh
=| [ || [ @)y )a" 0ray| 00s)ds]
asb  Gp
< [ 1"l [z (6)y™Y)|.016(s)| dsdy
Gp aSb

< [ g Dlla( [ 17 0)ILe16(s) ds+ e dy
aSb

Gp

g fllgA(?’)”A (( f”f(sc)l]ﬁ ds)l/p—i— e)d7
6p ash

< llgllz (2(8)" | fllso - ¢) -

But ¢ was arbitrary, so
| [11f*g(8)lLe0(s)ds | < lglls lfllsn 2(8)"".
aSb

Now taking the sup over all such ¢CB(a8b), dividing by A(8)'?,
then taking the sup over all a, beG yields '
IF*9llse < |Ifllsz llgllz -

All other parts of (ii) are proved similarly, follow easily, or are adap-
tations of standard proofs for complex-valued functions.

(i) Consider the functions 1(s) =1 and |f(-)| 4, both in AP(@®).
We have

1x(f (- )la(8) = M(IF()ILa) = Ifllz2,
so that
Ifllsr = |[L* ()Ll < Il [IFC)lLallsr = Iflls2

Holder’s inequality is the only other thing needed to complete the
proof. -
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The first consequence of this theorem is that || || satisfies the con-
tinuity requirement for normed algebra multiplication.

Definition 7. Let || ||y be any of the norms of Definition 6. By
AN (G, A) we mean the Banach algebra formed by completing AP(G, A)
in || |ly-

CoroLLARY 1. If feAP(G) v AP(G,A) and geAN(G, A), then
fxgeAP(G, A).

Proof. Say g, X g, each g, eAP(G, A). Then

If*g—F*gulle = lF*(9— 9n)lloo < [Iflleollg— gnlly = O,

and AP(G, A) is uniformly closed.

COROLLARY 2. If fe AN (@, A) and &> 0, then there exists ge AP(Q)
such that ||g*xf—flly < e.

Proof. Pick foe AP(G, A) such that | f—flly < /3. Then, as shown
in [13], we can find ge AP(G) with the property that |g|lmm =1 and
g *fo—Ffollo < €/3. It follows that

llg*f—fllw < llg*f— g*follw + llg* fo—Follw 4 1 fo—fll

<
< llgllst If —Sollw + llg*fo— folloo + 11.f — follv
< ¢e/3+¢/3+¢[3 =e.

These corollaries, along with the isometry between AP(G, 4) and
CB(Gg, A), permit us to relate many questions about AN (G, A) to the
(more familiar?) algebra of continuous functions. Some results along
these lines, due to Spicer [11], are of the following type:

(i) AN(G, A) is (Jacobsen) semi-simple if and only if AP(G, A)
is semi-simple,

(i) if AN(G, A) is semi-simple, then A is semi-simple,

(iii) if A is a semi-simple annihilator algebra, then AN (G, 4) is
the direct topological sum of its minimal cosed ideals, which are precisely
the N-norm closures of the minimal closed ideals of AP(G, A).

An unresolved question in [11] is answered in the following:

THEOREM 8. Suppose G is a compact group and A is a semi-simple
Banach algebra. Then C(G, A) (convolution multiplication) is semisimple.

Proof. Step one. Let a— Ta be an irreducible representation of
A by bounded operators on the Banach space X and # — U, be a continuous
irreducible unitary representation of G on n-dimensional complex space
K". Note that U, can be thought of as an (n X n)-matrix of complex
numbers such that, for the orthonormal basis §,, ..., §, for K", the inner
product <U_§&;, & is the (i, j)-th entry of U,. Now define TU: C(G, A) —
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B(X™) as follows: TU(f) “is” an (»n X n)-matrix whose (¢, j)-th entry is
[TU())y; =T [{U&, &>f(2)dw.
¢

It is clear that TU is a linear mapping. The verification that T'U is
multiplicative is a routine application of Fubini’s Theorem to a problem
in matrix multiplication.

Now consider two column vectors, (#,, ..., %,) # 0 and (y,, ..., ¥,)
in X". Pick me{l,...,n} such that z, # 0. Since T is irreducible, for
each ke{l,...,n} there is an a;ed for which Ta,(2,) = y,. Define
feC(G, A) by

f@) =n Y/ (Uskis &n> .
k=1
Then
[TUN)y =T [<U.&;, &dn Y Usliy bnd tydo
G k=1

Ta, if j=Fk and ¢=m,

0 otherwise.

That is, TU (f) has Ta,, ..., Ta, in its m-th column and zeros elsewhere,
S0
-TU(f)((wl’ ceey wn)t) = (Ta’l(wm)7 ceey Tan(wm))t = (Y19 ooy yn)t-

Thus T'U is irreducible.
Step two. Let f be in the radical of C(G, 4). Then TU(f) = 0 for
all 7 and U as in step one; i.e.,

T fmf(w)dw =0
G

for all 7, U, ¢, and j. But since A is semi-simple, this implies that

[<U.&, Epf(x)dw =0
G

for all U, ¢, j. Hence, if L is a bounded linear functional on A4,

[<U.&, &> Lf(a)dw = L [<U,&;, &) f(@)dw =0  for all T,4,j.
Q (6]

Now, since the functions (U,§;, &) are linearly dense in C(@), the
Riesz representation theorem shows that Lf(x) = 0 for all z¢@G. But L was
an arbitrary linear functional, so by the Hahn-Banach theorem, f(z) = 0
for all xe@. Thus C(@, A) is semi-simple.
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COROLLARY. If G is a topological group and A i3 a semi-simple Banach
algebra, then AN (G, A) is also a semi-simple Banach algebra.

Remark 1. The method of proof for Theorem 8 was suggested in
an article by Hausner [5]

Remark 2. While this manuscript was in preparation, Spicer [12]
communicated that he had independently solved the problem attacked
in Theorem 8. His approach, which is quite different, is to consider
B'(@, A) as the tensor product of L'(@) with 4, then work on the fine
structure by largely algebraic means.
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