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1. Introduction. We consider® linear groups @ with the property that.
the eigenvalues of each element are of modulus one. For each g e G we
form the Jordan decomposition g = 8(g)-u(g), where %(g) is unipotent,
8(g) acts semisimply, and they commute. We show that the group U
S GL(V) generated by the set {u(g): g € G} of unipotent parts is uni-
potent. In particular, it follows that the unipotent elements of @,
G, = {geG: g = u(g)}, form a (normal) subgroup in @ since G, =GNnU
and U is a group.

Groups of this kind turn up in the study of distal actions of auto-
morphisms, as explained in [4] and [1], and also in analysis on connected
Lie groups having polynomial growth (see [3] and [2]). In the latter
situation, a connected Lie group @ has polynomial growth if and only if its
adjoint representation satisfies the eigenvalue condition above.

The proofs in the sequel require only that the trace function Tr(g)
be bounded on @. This condition on the trace is used directly in [1]. How-
ever, it is not very hard to show that the trace is bounded on G if and only if
all eigenvalues are of modulus one.

Proof. Only the necessity requires comment. If g € @ has eigen-
values a,, ..., a,,let r = max{|a;|, |a;|""}. By switching to g, if necessary,
we may assume that ¢ occurs among the |a,|,...,|a,|. If ¥ =1, then
la;| = 1 for all ¢ and we are done. Otherwise, consider |Tr(¢g*)|= |} af| as
k — +oco. The terms involving the eigenvalues {|a;|: j € J} with |a;] =
dominate all others eventually; thus

| Dk jedy| = r*| 3 {explikt;]: je J}|

is bounded. This cannot happen unless the trigonometric polynomial
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D'exp[ik0,] vanishes as k — +oo. This is impossible unless it vanishes
for all k € Z, which is a contradiction. This completes the proof.

2. Main theorem. Let K = R or C. We shall prove the following

THEOREM. Let G < GL(n, K) be a group such that all eigenvalues are of
modulus one for each g €G. Let g = 8(g)-u(g) be the Jordan decomposition
and let U be a group generated by unipotent parts {u(g): g € G}. Then U is
a unipotent group.

The idea is to show that Tr(k) = n for all h € U. We start with a few
lemmas.

LeMMA 1. Let G be a subgroup of GL(n, K) such that Tr(g) = n for
all g €G. Then G is unipotent.

Proof. It suffices to show that g —I is nilpotent for each g e@.
Recall that if 4 is an (» X n)-matrix over K, then 4 is nilpotent whenever
Tr(A%) = 0 for 1 <i<n Now,

(9-17 =§(§)g"(—l)‘-ﬁ

i

Tr(g—I) = (5} (-1 Tx(g) = 0-n =0,

=0

as required.
LEMMA 2. If w e GL(n, K) is unipotent, then there exist mairices A,
(0 <1< n) such that

wb = M AW for all keZ.
1=0

Proof. Sinece u lies on a 1-parameter subgroup, v = Exp(X) for
a nilpotent X. Then u* = Exp(kX) is a finite exponential series, so

w* = Bxp(kX) = ) 4K
=0

LEMMA 3. For integers n > 0 and r = 1 consider the set of multi-indices

of length r:

Sn,r) =8 ={teZ: 0<y<n,all 1<j<r}.
Consider any function of the form
k) = Y 'p(i, k)K,
i

where each coefficient p(i, *) i8 an (almost) periodic function of ke Z".
Iff =0 on Z', then so i3 each coefficient: p(i, k) =0 for all ie 8, ke Z'.
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Proof. We work by induction on the degree r. When » =1 (any =),
the argument is simple. Each coefficient in f= >p(s, k)&* is bounded
in k € Z; unless p(n, *) = 0 for all k, the term involving k" is dominant
on a recurrent set in Z and we could not have f = 0 for all k. Similarly,
we get p(n, k) =... =p(1,k) =0 for all keZ, and then it is clear
that the constant term p (0, k) must also be identically zero.

Assuming the result true for all degrees less than r (and for all » > 0),
consider

(1) k) = 3o, WRY B
icS

Let us write k = (k', k,) e 2" ' xZ,i = (i',4,) e Z77' X Z and {ix a
K'c Z'7', letting k, € Z vary. The lead terms in (1) are those involving k7:

[ D (@, m), (', ) B 5 R
fes
The expression [...] is almost periodic in k,, so if it is not identically
zero, there will be a sequence of terms |k,| — oo for which [...]%} domi-
nates all terms involving lower powers of k.. We are thus led to a contra-
diction unless

Np((E,n), (K, )k ... B =0 for all k, e Z.
i’eS’

Then, by successively considering terms involving lower powers of &,
we get the system of identitics

(20 X p(#,5), (K, k)t ... P =0 for all k, € Z, 0<j<n.
ies

These remain true for any choice of k'.

Now consider (2), holding &, € Z fixed and letting k' € Z" vary. We
apply induction to each ecquation in the system to conclude that
p(@,5), (%, k) =0 for all i'e8', 0<j<m, k' e€Z', and for any
%k, € Z. This proves the leinma.

Proof of the Theorem. To show that Tr(k) = n for all he U,
we note that any k € U is of the form

— ok k
h =ul...ur, r<oo,k;eZ,

{taking non-negative exponents since u(g~') = u(g)~'). Take r elements
g1y ...y g, in G, decompose them (g; = s,;u;), and find similarity transforms
putting each s; in the diagonal form:

$; = a;-diag(dy, ..., by,) a7’

(a; invertible on C"). Let B € C"" be the array {b;: 1<t¢<r,1<j<n}
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whose rows are the eigenvalues of s,,...,s,; we propose to let B vary
throughout all arrays Z with |z;| = 1. When we do this, we write

8,(2) = a,ding 2y, ..., 2,) 07
If j eZ  is any multi-index, put

f1 71
- . R
j n e n
Z [1',- ir |°

2

This notation insures that s;(Z?) = ,(Z)’ for 1 <4< r. For each Z
and j, k € Z" form the product in GL(n, C):
G(Z,j§, k) = 8,(Z)Yrulr ... s, (Z)rulr = 5,(ZH)ubr ... 8,(Z%)ulr.

Now, writing #¥ = A+ A'k+ ... +A%k", as in Lemma 2, we com-
pute

(3) F(Z,5,8) = Te(6(Z, 5, B) = Tr(s2) ( 3] 43R

i1=0

— ZTr(sl(Zj)A.}l e 8,(Z0 ALK = gs:p(z, i, j)K*.

ieS
Here p(Z,1,j) = p(Z7?, i) is a polynomial in the entries of ZJ, hence
for fixed Z and
ieS={eZ :0<y<n,all j=1,2,...,r}

the map j — p(Z, ) is a finite sum of characters on Z7, hence is periodie.
There is also a uniform bound [p(Z,¢,j)| < M forallie 8, jeZ', and Z.
Now fix Z = B and take k = j in (3) to get

H(k) = F(B, k, k) = )'p(B, i, k)k'.
[55) -

H is bounded on Z", since
H (k) = Tr(sk1ufr ... sfrukr) = Tr(ghr ... gkr)

is the trace of an element in @, hence |H| < n due to the eigenvalue re-
quirements on G.

Consider the behavior of H if we fix k' € Z"! and vary %, € Z, and
examine the terms involving k;:

H = (...)+ D) B(B, (i1y oery Gpmyy 1), BB ... B

We know that H is bounded; after dividing by k7, both H/k} and
(...)/k" approach zero as k, — 4 oo due to boundedness of.the coefficients
»(B,i, k), so

(4) (B, (61 eeey bpmry ), K)E . KIS >0
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a8 k, > + oo. Since k' = (k,, ..., k,_,) i8 fixed, (4) is an almost periodic
function of k, € Z, and so must identically be zero for all k,. Since this is
so for any k', (4) is zero for all k € Z". Next, work on terms involving k™’
and so on to get the system of identities

..................... . . L] L]

. . 1 L
21’(31 (819 +evy fpory 1), B)B .. B =0

for all k € Z'. (The argument does not apply to the zero power of %,.)
By Lemma 3 and fixing k, € Z, all coefficient functions are zero:

p(B,i,k) =0 forall keZ,ief with i,> 0.

However, the argument above can be applied anew fixing attention
on any component k; (1 <j < r) instead of k,. This forces all cocfficient
functions to be zero (p(B, i, k) = 0) except for the “constant term”
corresponding to ¢ = (0, ..., 0).

Now, since the coefficient functions are zero, we conclude that

p(B,i,j) =p(B),i) =0 for all i #(0,...,0) in 8,je 2,
so that

F(B,j, k) = D)) p(B’,i)k* =p(B},0) for all j,keZ.
1S

Now set j =0 = (0,...,0) and recall (3); for all k € Z" we get
Tr(Iufr Iuk2 ... Iukr) = Tr(ubr ... u¥r) = p(B% 0) = ¢,

¢ being some constant. The constant is evaluated by taking %, =...
=k, =0: ¢ = Tr(I) = n. Thus

Tr(ufr...ufr) =«n for all ke 2", r < oo,
which proves the theorem.
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