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0. Stinespring in [10] proved several dominated convergence theorems
for operators measurable with respect to a semifinite von Neumann algebra.
Padmanabhan [6], [7] gave some generalizations of these theorems. In this
paper, we give a generalization of Theorems 5.3 and 5.4 of [7] (among other
things, we do not assume the trace to be finite). Theorems 1 and 2 of [6] are
obtained under weaker assumptions (Theorems 3.6 and 3.7). For we assume
either m-local or weak m-local convergences in place of gross convergence. In
the case where o = #(¥) is the von Neumann algebra of all bounded
operators acting in a Hilbert space ¢, while m(p) =dimp(#) is the
ordinary (von Neumann) trace on ./, this means that either strong or weak
convergence is assumed instead of convergence in operator norm. In Section
2 we investigate convergences in the *-algebra of measurable operaiors.

1. Basic definitions and notation. Throughout, & stands for a semifinite
von Neumann algebra acting in a complex Hilbert space 5, and m is a
faithful semifinite normal trace on /. The centre of the algebra </ is denoted
by Z. As is well known [3], there exist a locally compact Hausdorff space €,
a Radon measure p (unique up to equivalence of measures), a *-isomorphism
b 7 - £*(R, p, and a dimension function d(-) (unique up to multiplica-
tion by a positive real measurable function) mapping the projections in & to
u-measurable non-negative extended real-valued functions defined on Q and
satisfying conditions 1-9 of [9], Definition 1.4. In the sequel, we shall assume
that the following equality holds (see [3]):

m(p) = (d(p)du, peProj(),
Q
where the set of all orthogonal projections in &/ is denoted by Proj(.s#). Let

la| = (a* a)'/? = [ Ade;
0
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.be the spectral resolution. %, (&) = &, = & stands for the *-algebra of
operators measurable (m-measurable) in the sense of [4] (cf. [2]). For any
ac ¥, let us put

() =m(ef), A>0 (mdistribution of a)
and
a(@) =inf{0 < A <o0: m(ef) <a} (the rearrangement of a).
We refer to [12] for the properties of the function a(a), « > 0. Note that
Na(4) = inf {m(p*): |lapll < 4}
and, in consequence,
Nia+m (A+0) < na(A)+ 1, (5).
The subalgebra ¥,,(«) =%, =9 of & is defined by
S =lae L a(@—0 as a = 0} = {ae ZL: m(ej) <0, 1>0}.
For 0 <6 < oo, we define ([9], [5], [12])
L) =L =L = ac?: |lall, < o},
where

lall, = m(lal°)"* = {{ a° (@) da}*/°.
0

For ¢ > 1, ¥° is a Banach space with norm |||, ([9], [5], [12]). For 0
<o <1, £ is a complete quasi-normed space (cf. [1] and [2]) with quasi-

norm ||||,.
m is a subadditive measure defined as follows (see [1] and [2]):
i(p) = {1 if m(p) > 1,
m(p). if m(p) <1

for pe Proj(%).

2. Convergences in %, ().

DerFInNITION 2.1 ([4], [10]). A sequence of m-measurable operators {a,} is
said to be m-convergent (convergent in measure) to a measurable operator a
(a,— a) if one of the equivalent conditions (i)iii) is satisfied:

(i) (a—a,,)(a)-;»O for any a.> 0;

(i) for any ¢ > 0,

m(e”") 20,

m *
where |a—a,| = [ Ade{” is the spectral resolution of |a—a,;
(1]
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(i) for any ¢ > 0 there exists a sequence of projections from .o/ such
that

”(a_an)pn“ <&, m(P ) <e¢ for n = n..

We refer to [10], [4] and [2] for the properties of m-convergence.
ProrosiTioN 2.1. If a,—b, >0 (a,, b,€ %) and

Nay(D) 7 1a(4)  (a4(2) - a(a)

at each point of continuity of the function n,(A) (a(x)), then
Mo, (4) 7 Ma(A)  (ba(®) 7 a(@)
at each point of continuity of the function n,(2) (a()).
Proof. Fix ¢ > 0. We have
a, (x +¢) < b, (a)+(a,—b,) (e)
and
b, (@) < (by—a,) () + a, (a —¢)

forany a >¢and n =1, 2, ... Assume that for n > n, we have (a,—b,)(¢) <e.
Then, for n > n,, the inequality

a,(a+e)—e < b, () <a,(x—e)+¢

is true. If a« is a point of continuity of the function a(a), then from the
arbitrariness of ¢ > 0 the proposition follows.
For n,(4) the proof is almost the same.

CoroLLARY 2.1. If a, B a, then a,(x) —a(a) at each point of continuity of
the function a(a) (n,,(2) = 1a(4)).

Using Corollary 2.1 we can give the following version of Fatou’s
lemma:

LemMma 2.1. If a, > a, a, a,e L, (), then

lall, < liminf|la,ll,, 0<o <.
Proof. We have
lallg = ja"(a)da hm inf j a5 (x)da = lim 1nf||a,,||"

We next investigate how convergence in measure is related to con-
vergence in measure of the spectral projections (cf. [7] and [8]).
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THEOREM 2.1. Let a, > a, a, a, € ¥, N,(Ao) < 00, where Aq is the continuity
point of n,(A). Then

© ®
en' Bt where lal = [ ide,, la,) = [ ideld.
0 0

Proof We may suppose that 4,] 4, and 4y, 4, are continuity points of
Na(4). By Corollary 2.1, for any k: n,, (do) = n.(40) we have

’70,. (it) —; Na (Ak)

Hence
Mo, (A0)—1Na, (4) <3e <1 for n= N,
if 74(Ao)—1a(4) <& <3} for k> N,. Now let ¥ (4) = xi;,.x) and
1, /2y,
o (4) = {(l—lo)/(lk—io), Ao <A <A,
0, 0< A< 4.

Then e;, = y(lal) and eﬁ"(’,l = Y (la,)). Clearly, for any ¢ >0, k> N,, and n
2 Ny,

¥ (lal) — ¥ (lauDll 1,5 < ¥ (1al) — @i (la)ll 1,5
+liox (lal) — @i (|au)ll 1,5+ 1ok (1aa)) — ¥ (18Il 1
and
¥ (la)) — @x (la)ll .5 < ¥ () — @4 (Il 7 ez, — 1)
< mei,—ei,) = Na(Ao) —1a(4y)-
Similarly,
W () — @ (aaDll 1.5 < 71a, (A0) — N, (A) < 3e.
Moreover, ¢, (|a,]) = ¢ (la]) in LL(A), k=1,2,3,...(see [2], Theorems 5.1,

4.1 and Corollary 5.1). As a consequence of the above chain of inequalities
we obtain

limsup |y (Ia]) — ¥ (Iau)il 1.5 < 2(1a(A0) — 1 (4) < 2e.
From the arbitrariness of ¢ and k > N, it follows that
Y(la) v (a) in L5, e, P’ Sef .

COROLLARY 2.2. Let a, ™a, a, a,€ /(). Then é”"* Be} at each point
of continuity of the function n,(4).
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THEOREM 2.2. Let a, a,€¢ ¥ and
la| = [ Ade;, |a,| = [ Ade{’.
(1] (1]

Assume that €5 et, A > 0, at each point of continuity of the function n,(A).

Then |a,| = |a|.

The theorem follows from Theorem 5.2 of [2] and the proof of Theorem
44 (“Converse”) in [7].

Note that e®* et implies e Se} (see Proposition 2.3 and [10],
Theorem 3.1).

Suppose that h is a positive normal functional on &, ie, h(-) =m(t"),
where t 2> 0, ||t]|; = m(t) < . Let

na(4) = h(ey), where |a| = | Ade;.
0

ProposiTioN 2.2. (i) Let a,— a, a, a,e &. Then na,(A) = n2(2) at each
point of continuity of n(n).

(i) If n3_(A) > n2(4) for any h, and Ma,(A) = 14(4) at each point of continu-
ity of the functions n!(2) and n,(1), then |a,) =al.

Proof. (i) By Theorem 2.1 we have e 5 e} at each point of continuity
of n,(4) and, in consequence,

1 m 1
tl/2 e(ln) tl/2 . tl/2 ei.tlﬂ, tl/2 e(ln) t1/2 <t,
and (see Theorem 31)

My (A) = m(t'/2eP 1) S m(2 e 1/2) = yh(d)

at each point of continuity of n*(A).

(i) The proof of (ii) is a slight modification of the proof of Lemma 2.2
(“Conversely”) in [8].

DeriNiTioN 2.2 ([9], [5]). A sequence of measurable operators {a,} is

said to converge nearly everywhere to a measurable operator a (a, = a) if for
-any & >0 there exists a sequence of projections {p,}] from . such that
l@a—ay) p.ll <& pii0 and p; are finite for n > n,.

ProposiTioN 2.3 ([5], remark on p. 317). Let a,"5a and |la] <&,
n=1,2,... Then |la|| < ¢ and a,& —al for any EeH¥.

DerFiNiTiION 2.3 ([10], [11]). We say that a sequence of measurable
operators {a,} converges grossly to a measurable operator a (in the termi-
nology of [11] — converges locally in measuce) if for any ¢ > 0 the sequence

d(eﬁ"’l) converges to zero in measure pu on each set X <, u(X) < oo,

w .
where |a—a,| = [ Ade{’ is the spectral resolution of |a—a,|.
0

8 — Colloquium Mathematicum LV.1



114 L. J. CIACH

DerFINITION 24. A sequence of measurable operators {a,} is said to
converge m-locally to a measurable operator a (a,™ > a) if, for any projection

pe Proj (&), m(p) < w0, a,p— ap.

DEFINITION 2.5. A sequence of measurable operators {a,} is said to
converge weak m-locally to a measurable operator a (a,%™saq) if, for any
projection pe Proj(«), m(p) < «©, pa,p— pap.

It is clear that a,™.»>q implies a,*™q.

Remark 2.1. Let of = #(5) and m(p) = dim p(5¥); then m-local (weak
m-local) convergence coincides with strong (weak) convergence.

It is easy to check the following properties of m-local and weak m-local
convergences to be used later.

ProPosSITION 24. a,*™q if and only if qa,p—qap for any
p, g€ Proj (), m(p), m(g) < c.

ProposiTION 2.5. If {a,} is a sequence of self-adjoint measurable operators
which converges weak m-locally to a measurable operator a, then a is also self-
adjoint.

ProrosiTiON 2.6. If a,*™q, a,>0, n=1,2,..., then a is also non-
negative.

ProrosITION 2.7. Assume that a,™->a (a, a,c &) and |la,pl| < ¢ for n
=1, 2,... and some peProj(). Then |jap|| <ce.

ProPoSITION 2.8. Assume that a,*™'>a and |pa,p|| <e¢ for n=1, 2, ...
and some pe Proj(&f). Then ||pap| < e.

ProPOSITION 2.9. Each of the convergences determined by Definitions 2.1-
2.3 implies m-local convergence.

Proof. Since a,= a (a,2%>a) implies gross convergence a,— a ([10],
Lemma 4.2), it suffices to prove that gross convergence implies m-local
convergence. Let a, — a grossly and

- @
la—a,| = | Adel.
o

Besides, assume that pe Proj(%), m(p) < co. In virtue of Definition 2.1 (ii) it
is enough to show that, for any ¢ > 0,

m(f®")—0, where |'(a—a,|). pl = wa}")..
It follows immediately from the equality ’
Na—a,) pl = (pla—a,|* p)*/?
that £ < p, which implies d(f™") <d(p). By the hypothesis,
| m(p) =£d(p)du <o
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and d( f,""J_') tends to zero u-locally. To complete the proof it is sufficient to
make us¢ of the Lebesgue dominated convergence theorem and of the
relation ) ‘

m(f"") = [d(f™)dp.
Q

In order to close this section, we give one more version of Fatou’s
lemma (cf. [10], Theorem 4.10, and [12], Theorem 2.9).

THEOREM 2.3. Assume that a,™->a (a, a,€ Ln(H)). Then

llall, < iminf||a,|,, O <o <.
n

Proof. For any pe Proj(#), m(p) < o0, by Lemma 2.1 we have

lapll, < liminf|la, pll, < liminflla,)l,, 0 <o <oo.

it is therefore sufficient to prove that

llall, = sup {llapll,: peProj(=#), m(p) < 0}.
By [12], Proposition 2.4 (iii),

llall, = sup {llapll,: pe Proj(=#), m(p) < }.

Suppose that ae &, (). Then for any n=1, 2, ... we have
m(e,—e;) < 0,
where

Ial = Ilde;
0
and

sup {llapll,: m(p) < oo} > supla(e,— eyl = sup||lal (e, — 1)
n n

= ”Ia”la = ”a”a'
Suppose next that ae ¥\ <. It is sufficient to prove that

sup {||apll,: pe Proj(#), m(p) < 0} = .
Let

lal = J‘ ).del.
0

Suppose that i, > 0, m(efo) = o0 and choose a projection gq,, n°/A3 < m(q,)
<o, g, < ey, n=1,2,... Then

qn |a| qdn ? A'O dn-
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Hence
lgalal gulle = 110 M(q,.)"' =n
and

n < ||galal galls < ||lal gulls = llagall,-
In other words,

supllaq,,ll, = 00,

which completes the proof of Theorem 2.3.
CoroLLARY 2.3. If a,*™lsaq, then

llall, < liminf]|a,|],.
n

Proof. Fix peProj(¢), m(p) < . Then pa,™ pa. By Theorem 2.3,

lpall, < liminf||pa,||, < liminf||a,|,.

On the other hand,

llall, = lla*ll, = sup {|la* pll,: m(p) < 0}

= sup {|lpall,: m(p) < co} < liminf]|a,l,.

3. Several theorems on the convergence of a dominated sequence of
measurable operators. We shall now give the following generalization of
Theorems 5.3 and 5.4 in [7], ignoring, among other things, the finiteness of
the trace. Let b, be a sequence of non-negative operators belonging to
£ (o) and let

b, = be LL(sA), |IbJly — Ibll; -

THEOREM 3.1. Let a, > a (a, a,€ L, () and let one of the conditions (i),
(ii) be satisfied:

(1) @, <b,, n=1,2,..., 0<0 <00,

(i) —b, <(Rea)’ <b,, —b,<(Ima)’ <b, n=1,2,...,
under the assumption that the function R'3A — A°e R! is defined. Then ac &°
and ”a_an”a - 0.

Proof. (i) By Fatou’s lemma,

lall, < liminfllal, < liminf|lbJI}/* = |Ibl}/* < c0.
" n

In other words, ae #° and ||a|| < ||bl|,. We shall now show that a, — a in
2°. For this purpose we consider two cases.
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Case 1. ¢ > 1. By assumption, a, >a, that is, (a— a,) () -0, and thus

(a—a,)’(x) 70 for any a > 0. Moreover,

(a—a,)’ (@) < [a(2/2) +a,(2/2))°
<277 [a°(@/2)+a7(2/2)] < 2°7 ' [a° (@/2) + ba(a/2)].

Thus, by Proposition 2.1 and the Lebesgue dominated convergence theorem,
la—a,l; = | (a—a)°(@)dex 0.
. 0

Case 2. 0 <o < 1. The proof of case 2 differs only in the estimate

(a—a,)’ (o) < [a(2/2)+b,(2/2)]° < a®(a/2) + a7 (¢/2)
< a’(a/2)+ b3 (a/2).

(i) Without loss of generality we may assume that a, =a¥, n=1, 2, ...
Let

a0
a, = [ Aded.
- @
From condition (ii) we get at once

(a, e(('(;. u\')))c =a, e(('g. o) S e((n&. ®) b, e((n&‘ o)y N= 1, 2,..,

and
—e? .0 Dn€® 00y S A€ 0,00 S E” 0,00 Dn€” 00y N=1,2, ...
Thus
lay|® = a’e‘{& ,+a e(—w 0 e<& oo)b e<& ao)+e( ®, O)b e(-ao 0):
Hence
ay (x) < 2b,(x/2)
and

(@a—a)’ (@) <2° '[a’(/2)+2b,(a/4)] for ¢ >1.
For 0 <o <1,
(a—a,)’(a) < a’(2/2) +2b,(a/4).

Consequently, it suffices to use the Lebesgue dominated convergence theorem
and Corollary 2.1 to prove that a,—a in #°.
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CoroLLARY 3.1. If, under the assumptions of Theorem 3.1 omitting condi-
tions (i) and (i),

(iil) la—a,°<b,, n=1,2,...,
or

(iv) |IRea,]° < b,, |Ima,|°<b,, n=1,2, ...,
then |la—a,l|, — O.

Remark 3.1. In the proof of Theorem 3.1 we have only made use of

Ibally = [ ba(a)doc — gb(a)da =|blly, and  b,(x) = b(a)
0

almost everywhere with respect to the Lebesgue measure on the half-line
(0, o0). The following trivial example shows that these conditions can be
satisfied despite the fact that m-convergence does not hold. Indeed, let
p, qeProj(¥), p~q#0, plq. Put b,=p, n=1,2,..., b=gq. Of course,
b,(@) =b(a), @ >0, ||bJl, =lbll;, n=1, 2, ... If b, =b, then

0=gqp=gqb,™qb=4q*=gq,

which leads to a contradiction with the assumptions. In this example, b, = p.
By putting b,, =p, by,-y =¢q, n=1,2,...,b=q, we obtain an example of
the sequence {b,} which is not m-convergent and satisfies the required
conditions.

We shall now give a few versions of Theorem 3.1, assuming the m-local
convergence of the sequence {a,} (cf. [10], Theorems 4.6, 4.8 and 4.9). We
assume that, for a sequence of operators {b,},

l1ally = gb..(a)da e gb(a)da = m(b) =|bll;;

b,(2) — b(x) almost everywhere with respect to the Lebesgue measure on the
half-line (0, ) (0 < b, b,e LL(H)).

THEOREM 3.2. Let us assume that a sequence of measurable operators {a,}
converges m-locally to a measurable operator a, |a,|?><ce Lu(H), n
=1, 2,..., and one of the conditions (i), (ii) is satisfied:

@) |laJ°<b,,n=1,2,..., 0<0 <00,

(i) —b,<(Rea)’<b,, —b,<(Imay)’<b,, n=1,2,..., under the as-
sumption that the function R* 31 — A°e R is defined. Then ac ¥° and a, tends
to a in ¥°.

The proof of this theorem is based on Theorem 3.1 and on the following

Lemma 3.1. Let a,™>a (a, a,e ¥) and |a,)* =a*a<ce S, n=1,2,...
Then a,—a.
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Proof. Fix ¢ > 0. Let
a0
c= _H.de,l.

From the inequality |a,|*> < c we get 1mmed1ately

e, la,l?e, < ce, <cel.
Thus ||a, e,l*> = |le,|a,l? .|| <e. Hence, by Proposition 2.7, |lae,|| < €'/?, and
$O

l(@a—ayell <22

'What is more, a, = a,e,+a,e;. By hypothesis, a,e; = ae}. In order to prove
a, > a it is sufficient to show that for any & > O there exists some ns and
that, for n > n,,

la—a)pall <6, m(py) <
where p,e Proj(#), n=1, 2,... Choose ¢ so that ¢ < §%/16 and let
l(@a—awe; pall <8/2, m(py) < for n > n,.

Then, for n > n,,

a—a,) Pl < l@—ay) e, pill +lI(a—an) el pl < 2642 +8/2 = 6,

which completes the proof of the lemma.

Note that conditions (i) and (ii) in Theorem 3.2 may be replaced by one
of the conditions

(1) la—a,|°<b,, n=1,2,...;

(iv) |Rea,|’ <b,, Ima,|°<b,, n=1, 2, ...

THEOREM 3.3. Assume that
a,™>a, a*™sa* (a,a,e?),
(la)® +la¥)?* <ces, n=1,2,...,

and one of the conditions (i)(iv) is satisfied:
(1) la,)° <b,, n=1,2, ...,

() la—a|°<b,, n=1,2,...,

(iii) |Rea,|° <b,, Ima,|°<b,, n=1,2,...,

(iv) —b, <(Rea,)’ <b,, -b,<(Ima,)’<b,, n=1,2,...,
under the assumption that the function R' 31 — 1°e R! is defined. Then ac &°
and |la—a,)|l,— 0, 0 <o < o0.

The proof of the theorem will be preceded by a simple lemma.

LEMMA 3.2. Let a€ ¥, a = a* and ||p|a| p|| < ¢ for some p € Proj(.</). Then
llpapll < 2.
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Proof. Let
a0
a= I Mel

= a0

be the spectral resolution of a. Put
at =aep,o and a =ae_ ).
Obviously, 0 < a” <|a| and 0 < —a~ < |a|. In consequence,
lpa* pl <e¢ and |pa” pl| <e.

Hence we get at once

lipapll < llpa™ pll+llpa” pll < 2.
Proof of Theorém 3.3. Let

c= jlde‘.
1]

For any e >0, n=1, 2,..., we have
e, (la,)® +|a*?) 2 e, < ce,.
Hence and from the easily checked equality
(2|Rea,|* +2|Ima,|})!/? = (la,|* +|a}|?)'/?
we obtain
212¢,|Rea,le, <ce, 2Y%e|Ima,e,<ce, n=1,2,...
Thus, by Lemma 3.2,
lle. anell < lle, Re(ay) el +le. Im(a,) el < 2¥2e.
Using this inequality and the equality
a, = e, a,e, +.e,la,, e, +ela,el+e.a,el

one can show, analogously as in the proof of Lemma 3.1 (see Proposition
2.8), that a, > a. To complete the proof it suffices to use Theorem 3.1 and
Corollary 3.1.

Remark 3.2. It follows from Theorem 3.5 that |Rea,} < ¢, |Ima,| s c
may be assumed in place of

(ad*+la¥)?)? < c.

To finish with, let us note the verity of the following theorems. As to the
sequence {b,}, we now assume that

b,*=L>b, [IbJll; = lblly  (0< b, bye Zp(H)).
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THeorReM 34. If a,™a (a, a,€¥) and |a—a,| <b,, n=1,2, ..., then
lla—ayll, =0.

COROLLARY 3.2. As la—aJ2<b,, n=1,2,..., then |la—a,l|, — 0.

Tueorem 3.5. If a,*2ag (a,a,=a*c¥) and —-b,<a,<b, n
=1,2,..., then a=a*e ¥' and m(a,) — m(a).

CoroLLARY 3.3. Let a,*™'sqa, and —b, < Rea,<b,, —b, <Ima, <b,.
Then ae ¥! and m(a,) — m(a).

The proofs of these theorems are based on Fatou’s lemma (Theorem 2.3,

Corollary 2.3) and, for the case of gross convergence, included in [6]
(Theorems 1 and 2, Corollaries 1.1 and 2.1).

Remark 3.3. Under the assumptions of Theorem 2 or Corollary 2.1 in
[6] we have |la—a,llmy1 — O if the centre of &/ is countably decomposable

(see [1] and [2], Theorem 4.1).

REFERENCES

[1] L. J. Ciach, Linear-topological spaces of operators dffiliated with a von Neumann algebra,
Bull. Pol. Acad. Sci. Math. 31 (1983), pp. 161-166.

[2] — Subadditive measure on projectors of a von Neumann algebra, Doctoral Thesis, LodZ
1983. .

[3] J. Dixmier, Les algébres dopérateurs dans I'espace hilbertien, 2nd edition, Gauthier-
Villars, Paris 1969.

[4] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), pp. 103-116.

[5] T. Ogasawara and K. Yoshinaga, 4 non-commutative theory of integration for opera-
tors, J. Sci. Hir. Univ, Ser. A, 19.3 (1955), pp. 311-347.

[6] A. R. Padmanabhan, Some dominated convergence theorems in a von Neumann algebra,
Proc. Japan Acad. 42 (1966), pp. 347-350.

[7] — Convergence in measure and related results in finite rings of operators, Trans. Amer.
Math. Soc. 128 (1967), pp. 359-378. )

[8] — Probabilistic aspects of von Neumann algebra, J. Funct. Anal. 31 (1979), pp. 139-149.

[9] L E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953),
pp. 401-457.

[10] W. F. Stinespring, Integration theorems for gages and duality for unimodular groups,
Trans. Amer. Math. Soc. 90 (1959), pp. 15-56.

[11] F. J. Yeadon, Convergence of measurable operators, Proc. Cambridge Philos. Soc. 74
(1973), pp. 257-269. :

[12] — Non-commutative LP-spaces, ibidem 77 (1975), pp. 91-102.

INSTITUTE OF APPLIED MECHANICS
HOLY CROSS TECHNICAL UNIVERSITY

Regu par la Rédaction le 5.11.1981;
en version modifiée le 20.7.1985



