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In this paper X and Y always mean compact Hausdorff spaces,
and a continuum means a compact connected Hausdorff space.

Let @ be a subcontinuum of Y. A continuous mapping f from X
onto Y is said to be

(i) monotone if the set f~1(Q) is connected (see [4], p. 123);
’

(ii) confluent if for each component C of f~'(Q) we have f(C) = Q
(see [1], p. 213);

(iii) semi-confluent if for each two components C, and C, of f~1(Q)
we have either f(C,) = f(C,) or f(C,) = f(C,) (see [8], p. 252);

(iv) weakly confluent if there exists a component C of f~'(Q) such
that f(C) = @ (see [6], Sections 4 and 5);

(v) pseudo-confluent if for each pair of points y, y'e @ there exists
a component C of f~'(Q) such that y, ¥ e f(C) (see [7], Corollary 1.4).

Let @ denote the set of all mappings f: X—Y belonging to an arbitrary
class among mentioned above. We consider a problem whether the set @
is or is not closed in the space ¥* of all continuous mappings f: X =Y
with the compact-open topology. This is a problem asked by Professor
B. Knaster and Professor K. Sieklucki.

It is known that (see [b], p. 797)

ProposITION 1. If Y is locally connected, then the set of all monotone
onto mappings f: X—Y is closed in the space YX.

We will prove such implication for confluent and semi-confluent
mappings and we will prove that the conclusion of the theorem holds
for pseudo-confluent mappings even without the assumption that Y is
locally connected.

Firstly recall that the mapping F: ¥ — 2% (here 2% denotes the space
of all closed subsets of X with the Vietoris topology) is called upper semi-
continuous if the set {y: F(y) « G} is open in ¥ whenever ¢ is open in X
(see [3], p. 173). We have (see, e.g., [4], p. 57, and [5], (), p. 798)
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PROPOSITION 2. If f: X —Y 1is continuous, then the mapping f~': ¥ 2%
18 upper semi-continuous.

ProrosiTIioN 3. If H(f) = f~'(B) for Be 2¥ constant, then the mapping
H: YX2% is upper semi-continuous.

LeMmMA 1. If G i8 an open subset of X and B is a closed subset of Y,
then the set A4 = {g: g~'(B) = G} is open in Y=X.

In fact, the mapping H: YX— 2%, defined by H(g) = g~'(B), is upper
semi-continuous by Proposition 3. Thus, by the definition of upper
semi-continuity, the set 4 is open in YZX.

LeMMA 2. If R is a closed subset of X and V is an open subset of Y,
then the set I' = {g: g(R) = V} is open in YX.

This follows immediately from the definition of the compact-open
topology in YZX,

LemMMA 3. If f: X—>Y s continuous and G is an open subset of X,
then the set U = {y: f~'(y) = G} is open in Y.

Indeed, the mapping f~': ¥—2% is upper semi-continuous by Propo-
sition 2. Therefore, by the definition of upper semi-continuity, the set U
is open in Y.

Recall that, given three subsets A, B, C of a topological space, the
set C is said to be connected between A and B provided A, B = C and
C # MUN, where Ac M, Bc N and MnN =@. We have (see [4],
§47, II, Theorem 3, p. 170)

ProrosITION 4. If A, B, C are compact sets and the set C is connected
between A and B, then there exists a component K of C such that ANK +# O

#* BNK.
The proof of the following theorem partially coincides with the

proof of Theorem of [5]:

THEOREM 1. If a space Y is locally connected, then the set @ of all con-
fluent onto mappings f: X—Y is closed in the space YX.

Proof. Let fe @. It ought to be proved that f is confluent. Suppose
that f is not confluent and let @ be a subcontinuum of Y, let C be a com-
ponent of f~1(Q) and let y,e @\f(C). It follows from Proposition 4 that
the set f~!(Q) is not connected between C and f~'(¥,). Thus, there are
two closed sets 4, and A, such that

(1.1) f7YQ) = 4,v4,, A,nd, =@, Cc A, and [y, < 4,.
Since X is normal, there are open sets G, and G, such that
(1.2) A, c @, A,=cG@, and GG,NG,=0.
Since the mapping f is continuous and G = @, UG, is an open subset
of X, the set
(1.3) U={y:f'y)=@}



SETS IN vX 71

is open by Lemma 3. Moreover, by (1.1) and (1.2), @ = U. The local con-
nectedness of Y implies that there is a connected open set V such that

(1.4) QcV and VcU.
We will show that

(1.3) fY(V)c@.

Indeed, if zef~'(V), then f(x)eV. Hence f(z)e U by (1.4). Since
ze f~!(f(2)), we conclude by (1.3) that we f7(f(#)) = G. Thus (1.5) holds.
Consider sets 4 ¢ YX and 4’ ¢ Y* defined as follows:

(1.6) A ={g: g-1 V) c G},
(1.7) = {9: 97 (%o) = Go}.

Since @ and @, are open and since V and {y,} are closed, we infer
by Lemma 1 that sets 4 and 4’ are open in Y*. Moreover, by (1.1), (1.2)
and (1.5), we have

(1.8) fednd'.
Put

(1.9) I'=|g: g(f71(Q) = V}.

Since f~1(Q) is closed and V is Open, the set I'is open in Y* by Lem-
ma 2. Moreover, fe I', because f(f Q)) =@ and @ = V (by (1.4)). Conse-
quently, the set 4NA’NT is open in Y% which contains f (cf. (1.8)). Since
fe P, the set DNANA’ AT is non-empty. Thus there is a g such that

(1.10) ge dnAnA’'NI.
Since ge I', we have, by (1.6), the decomposition
(1.11) g7 (V) = (g71(V)nG) U(g7 (F)NG,)

of g~}(V) into two separated sets (cf. (1.2)). Since ge I' (cf. (1.10)), we
infer by (1.1) and (1.9) that g(4,) = V. Thus 4, c g~(¥). This implies’
by (1.2) that 4, < ¢~ (¥V)Nn@G,. Therefore the set g“(V) NG, is non-empty.
We conclude that there is a component K of the set g~!(V) which is con-
tained in the set g71(V)NG,. It follows from ge 4’ (cf. (1.10)) and (1.7)
that ¢g~'(y,) = G;, thus y,¢ g(K). But this contradicts the fact that g¢
is confluent (ge @, cf. (1.10)), because y,e @ =V (cf. (1.4)) and K is a

component of g~!(¥) such that y,¢ g(K). The proof of Theorem 1 is com-
plete.

THEOREM 2. If a space Y is locally connected, then the set @ of all sem:-
confluent onto mappings f: X—Y is closed in the space Y*.
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Proof. Let fe . We should prove that f is semi-confluent. Suppose
that f is not semi-confluent, let @ be a subcontinuum of Y and let C,
and C, be components of f~'(Q) such that the sets f(0,)\f(C;) and
f(C)N\f(C,) are non-empty. Thus there are points y, and y, such that

(2.1) Y1 f(CONF(C2)  and  y,e f(Cy)Nf(C,).

It follows from Proposition 4 that the set f~'(Q) is connected
neither between O, and f~'(y,) nor between O, and f~'(y,). Thus there
are closed sets A4,, 4A,, B, and B, such that

(2.2) f—l(Q) = A,V4,, A,n4,=0, C,c A, and f_l(yz) c 4,,
and

(2.3) f4)=B,YUB,, B,NB, =0, C,cB, and 'y, < B,.

Since X is normal, there are open sets G,, G, H, and H, such that

(2.4) Al c Gl’ Az [ G2 alnd GlnG2 == ﬂ
and
(2.5) B,cH, B,cH, and H,nH,=0.

We can assume that G,UG, = H,UH, = @. Since f is continuous
and @, G, and H, are open subsets of X, the sets

(2.6) U={y: f'(y) =G},
(2.7) U, ={y: f(y) = Hy},
and

(2.8) U, ={y: [ (y) = Gy}

are open by Lemma 3. Moreover, by (2.2)-(2.5), we have
(2.9) Q c U’ y1€ Ul aalld. y2€ Uz-

The local connectedness of Y implies that there is a connected open
set ¥V such that

(2.10) QcV and VcU.
We will show that
(2.11) fY(¥V) < a@.

Indeed, if a:ef‘l(I—’)n, then f(xz)eV. Hence f(xz)e U by (2.10). Since
we f~!(f(2)), we conclude by (2.6) that we f~*(f(#)) = G. Thus (2.11) holds.
Moreover, there are open sets V, and V, such that

(2.12) y,eV,, y,eV,, V,cU,, V,cU, and V,nV,=0.
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We will show that
(2.13) f V)< H, and [ YV, ca@,.

Indeed, if zef~!(V,), then f(z)e V,. Hence f(x)e U, by (2.12). Since
ze f~!(f(#)), we conclude by (2.7) that zef~'(f(x)) = H,. The proof of
the second inclusion is the same.

Consider sets 4 ¢ Y%, A, « Y* and 4, c YX defined as follows:

(2.14) 4 ={g: g71(V) < G},
(2.15) 4, ={g: g~(V,) c H,},
(2.16) A, ={g: g7 (V,) = Gy}

Since the sets G, H, and G, are open and since ¥V, V, and ¥, are closed,
we infer by Lemma 1 that the sets 4, 4, and 4, are open in Y*. Moreover,
by (2.11) and (2.13), we have fe An4,nA4,. Thus
(2.17) A4Nn4,n4, is an open neighbourhood of f in ¥YX.

Put

(2.18) I'=\g: g(f Q)<= v},
(2.19) I, = {93 g(f_l(?ll)) c V1}
and

(2.20) Iy = {g: 9(f(¥2)) = Va}.

Since the sets f~'(Q), f~'(¥,) and f~'(y,) are closed and since the sets
V, V,and V, are open, the sets I, I', and I', are open in Y* by Lemma 2.
Moreover, fe I'nIynI,, because f(f™(Q) =@ <V, f(f™(5)) =4V,
and f(f'(y;)) = y.¢V, by (2.10) and (2.12). Thus

(2.21) I'nIynT, is an open neighbourhood of f in Y=X.

It follows from (2.17) and (2.21) that the set And,Nn4,nI'nl' NI,
is open in Y* which contains f. Since fe &, the set DNAnA,nA,nI'nI,AT,
is non-empty. Thus there is a g such that

(2.22) ge PnAnA,nd,nI'NnI'1NT,.

Since ge 4, we have, by (2.14), two decompositions
(2.23) g~ (V) = (g7 (V)nGy) V(g7 (V) NG,
and
(2.24) 971 (V) = (g7 (V)nH,) u (g7 (V) nH,)

of g~!(V) into two separated sets (cf. (2.4) and (2.5)).
Since the set C;Nf~(y,) is non-empty (cf. (2.1)), there is a point %, ¢ C,
such that f(x,) = y,. Since ge I'(cf. (2.22)), we infer by (2.2) and (2.18)
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that g(@,)e V. Thus x,¢ g~*(V). This implies by (2.4) that z,e g~ (V)NG,.
We conclude that there is a component K, of the set g~!(V) which
is contained in the set ¢~*(V)n@, and x,¢ K,. It follows from ge 4,
(cf. (2.22)) and (2.16) that g~ (¥,) = G,, thus g(K,)nV, = @. Moreover,
since ge Iy (cf. (2.22)), »#,¢ K, and f(x,) = ¥,, we infer by (2.19) that
g(K,)NnV, is non-empty. Thus

(2.25) K, is a component of g~ (V), g(K,)nV, # @ and g(K,)nV, = 0.

Similarly, since the set C,Nf~(y,) is non-empty (cf. (2.1)), there is
a point z,e C, such that f(x;) = y,. Since ge I' (cf. (2.22)), we infer by
(2.3) and (2.18) that g(x,)eV. Thus z,e g~'(V). This implies by (2.5)
that x,e g~ (V)NH,. We conclude (cf. (2.24)) that there is a component K,
of the set g~(V) which is contained in the set ¢~*(V)nH, and z,¢ K,.
It follows from ge A, (cf. (2.22)) and (2.15) that ¢~ '(V,) = H,, thus
g(K,)nV, = @. Moreover, since ge I', (cf. (2.22)), #,¢ K, and f(z;) = ¥,,
we infer by (2.20) that g(x;)e g(K,)NV,; thus the set g(K,)NV, is non-
empty. Therefore, we have

(2.26) K, is a component of g~(V), g(K,)nV, = @ and g(K,) NV, = 0.

Consequently, K, and K, are components of the set g~'(V) and
the sets ¢g(K,;)\g(K,) and g(K,)\g(K,) are non-empty by (2.12), (2.25)
and (2.26). This means that the mapping ¢ is not semi-confluent, because
¥V is a subcontinuum of ¥, which contradicts the fact that ge @ (cf. (2.22)).
The proof of Theorem 2 is complete.

THEOREM 3. The set @ of all pseudo-confluent onto mappings f: XY
is closed in the space Y.

Proof. Let fe d. We should prove that f is pseudo-confluent. Sup-
pose that f is not pseudo-confluent. Let @ be a subcontinuum of Y and
let v, and v, be points of @ such that there exists no component C of f~!(Q)
with y,, ¥,¢€ f(C). This means by Proposition 4 that f~!(Q) is not connected
between f~'(y,) and f~'(y,). Thus there are two closed sets A, and A,
such that

(3.1) f7HQ) =A4,VA,, A\nA; =0, f(y) =4, and f'(y,) <= 4,.
Since X is normal, there are open sets G, and G, such that
(3-2) A1 c Gl’ Az c G2 aind GlnGz = Q-

Put @ = G,UG,. Consider the sets 4 =« Y%, 4, <« YX and 4, < ¥Y*
defined as follows: ‘

(3.3) A ={g: 971(Q) = G},
(3.4) 4, = {g: 9—](?/1) < Gy},
(8.5) 4, = {g: 97 (y2) = Gy}
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Since the sets G, G, and G, are open and since the sets @, {y,} and
{y,} are closed, we infer by Lemma 1 that the sets 4, 4, and 4, are open
in YX. Moreover, by (3.1) and (3.2), we have fe An4,NnA4,. Thus

(3.6) ANnA4,n4, is an open neighbourhood of f in Y%,

Since fe @, the set dNnANA,NA4, is non-empty by (3.6). Thus there
is a g such that

(3.7) gednAnd,n4,.
Since ge 4 (cf. (3.7)), we have, by (3.3), the decomposition

(3.8) 97HQ) = (971(Q)NG,)U(g7(Q)NG,)

of g~!(Q) into two separated sets (cf. (3.2)). Thus any component of g~*(Q)
is contained either in ¢~'(Q)NG, or in g~ !(Q)NG,. Let K be an arbitrary
component of g~(Q). If K = ¢7'(Q)N@G,, then y, ¢ g(K), because @, NG, = G
and ge 4, (cf. (3.2), (3.5) and (3.7)). If K < ¢~'(Q)NG,, then y, ¢ g(K),
because G,NG, = O and ge 4, (cf. (3.2), (3.4) and (3.7)). Therefore, for
each component K of ¢g~'(Q) the set g(K) fails to contain either y, or y,.
This means that ¢ is not pseudo-confluent, because y,, ¥,¢ @ and @ is
a continuum. But this contradicts the fact that ge @ (cf. (3.7)). The proof
of Theorem 3 is complete.

We have the following

PROBLEM. Is the set of all weakly confluent onto mappings f: XY
closed in the space YX? (P 986)

The answer to this problem is positive if we assume additionally
that X and Y are metric spaces. We will prove this.

Firstly we have (see [4], § 44, V, Theorem 2, p. 88)

ProPOSITION 5. If Y 8 a metric space, then the topology of uniform
convergence of YX coincides with the compact-open topology of YX.

PROPOSITION 6. In order that the sequence {f,} of continuous mappings
of a metriec space X onto a metric space Y be uniformly convergent to a mapping
f it i8 mecessary and sufficient that

limey, =
7n—->00
imply
lim f, (z,) = f(@).
n—->00
Recall that if {4,} is a sequence of subsets of a space X, then Li 4,

n—>00
denotes the set of all points xeX for which every neighbourhood of «

intersects A4, for almost all » and Ls A, denotes the set of all points xeX

n—>00

for which every neighbourhood of x intersects A, for arbitrarily large =.
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A sequence of subsets {4,} is said to converge to a set A (denoted by
LimAd, =A)if Lid, =4 =Ls A,. We have

n—»00 n—o0o n—>00

COROLLARY 1. If {f,} is a sequence of continuous mappings of a metric
space X onto a metric space Y which is uniformly convergent to a mapping f
and if Q is a closed subset of Y, then

nEifJI(Q) < Q).

In fact, if ze Ls f;'(Q), then there is a sequence {z,} of points of X

n—>00

such that limz, = x and z,¢ f;'(Q) for each n = 1,2, ... It follows from

n—00

Proposition 6 that
lim f, (@) = f(x).

7n—>00

Since z,¢f;!'(Q), we infer that f,(x,)e@; thus f(r)e@, because @
is closed. But this means that zef~'(Q).

THEOREM 4. If X and Y are metric spaces, then the set @ of all weakly
confluent onto mappings f: X—Y is closed in the space Y.

Proof. Let fe @. It ought to be proved that f is weakly confluent.
Let @ be an arbitrary subcontinuum of Y. It follows from Proposition 5
that there is a sequence {f,} of continuous mappings of X onto Y which
is uniformly convergent to a mapping f, and f,e¢ @ for each n» =1, 2, ...
Since f,e @, there is a component C, of f;*(Q) such that f,(C,) = @. We
choose a convergent subsequence {C, } of the sequence {C,} (cf. [4],
§ 42, I, Theorem 1, p. 45, and § 42, IT) and define C = le(}' . It follows
from Corollary 1 that e

(4.1) ¢ =LimC, < Ls f7(Q) = f7(Q).

Moreover, the set C is a continuum (cf. [4], § 47, 1I, Theorem 4,
p. 170). Take a component K of f~'(Q) such that

(4.2) Cc K.

We will show that
(4.3) J(K) = Q.

Indeed, let y< Q. Since f, (C, ) =@, there is a point w, e, such
that f, (v, =y. We can assume that the sequence {z, } is convergent

Tm
(X is a compact metric space) and we define

z = limz,
m
m—o0

It follows from Proposition 6 that
f((l?) - hmfnm nm)'

m-—»00

But f, (v, )=y for each m =1,2,..., thus f(2) =y. Moreover,

Mon
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by (4.1), xe C. Therefore, there is a point ze K such that f(x) =y
(cf. (4.2)). Thus (4.3) holds.

Equality (4.3) implies that the mapping f is weakly confluent.
The proof of Theorem 4 is complete.

The assumption in above theorems that mappings are onto is essential
(cf. [5], Remarks, p. 799). This can be seen from the following

ExAMPLE 1. There is a sequence of homeomorphisms &, of the interval
I = [0,1] into the circle 8§ = {(x, ¥): #*+y2 = 1} which converges uni-
formly to a mapping h of I onto § which is not pseudo-confluent.

In fact, put

1 1 . 1 1
h,(t) = |cos2n (1 ———) t+—J|,sin2= (1——)t+— for te [0, 1].
n n n n
The required conditions are easy to check.
The assumption in Theorems 1 and 2 that the space Y is locally
connected is also essential. This can be seen from the following

ExAmMPLE 2. There is a sequence of homeomorphisms A, of the arcwise
connected space M onto itself which converges uniformly to a mapping h,
which is not semi-confluent (thus » is also not confluent; cf. [8], Proposi-
tion 2.1, p. 252).

Let C denote the Cantor ternary set lying in the unit interval I = [0, 1]
and let a, = 1/3", b, = 2/3" and ¢, = 2/3+1/3""" for n =1,2,... We
define mappings f,: I—-I as follows:

a(z,y, x'yr?/” t) = v -y,(t_w)‘l‘w,a
. z—y
a(c;,1,a,,1,1) if te[ey, 1],
a(Cyy Ci1y By Wy_yy t) if te[c;cy] and ¢ =2,...,n,

fn(t) =

a(bI’ 0”, bn+l’ an’ t) lf t€ [bla cn]7
a(07b170’bn+l’t) if te [0, b,]

for n =1,2,...
It is easy to check that
(a) f, is a homeomorphism from I onto I,

(b) fu(C) = C,
(¢) the sequence {f,} converges uniformly to the mapping fo, where

a(b,,1,0,1,1) if te [by,1],
Jo® =1, if te [0, d,].
Put
N = (I x{0hu(CxI),
gn(®,y) = (fa(®),y) for each (x,y)e N and » =0,1,2,...
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It follows from (b) that g, are well defined. Moreover, by (a), g,
are homeomorphisms for » =1, 2, ..., and, by (¢), {g,} converges uni-
formly to g,. However, the mapping f, is monotone and g, is confluent.
We waste the confluence of g, in the following way.

We define an equivalence relation ¢ on N as follows:

(%, y) o(2’yy’) if and only if either (x,y) = (z',y’) or x =2’ =0,
Y, ¥'e[1/4,3/4] and |1/2 —y| = |1/2 —y'|.

Denote by ¢ the canonical mapping from N onto N/g. Put M = N/p
and h,(q) = <p(gn(<p“(q))) for each ge N/g and » =0, 1, 2, ...

It is obvious that M and h, satisfy the required conditions.

The set of all confluent onto mappings f: X-—+Y and the set of all
semi-confluent onto mappings f: X—Y are not closed in YX by any
chance. This fact is more general.

Let 2 be an arbitrary class of continuous mappings, which contains
a class of all homeomorphisms and is such that if fe 2, then Af and fh
belong to 2 whenever h is a homeomorphism.

We say that 2 has property (p) if the conditions f: X—Y and fe 2
imply that for each component @ of Y and each component K of f~!(Q)
there is f|Ke 9.

In particular, the class of monotone mappings, the class of confluent
mappings and the class of semi-confluent mappings have property (p)
(see [1], I, p. 213; [8], Theorem 3.7, p. 255).

THEOREM 5. If a class @ has property (p) and for each two compact
melric spaces X and Y the set of all onto mappings f: X—Y belonging to
the class 9D is closed in YX, then each continuous mapping of X onto Y
belongs to 2.

Proof. We use the idea of the construction of Example 2. Namely,
let » be a continuous mapping from X onto Y and let C and f, for

n =20,1,2,... be such as in Example 2.

Put N =CxX and g,(t @) = (f,(t),2) for each (4, x)eN and
n=20,12,...

We have

(5.1) g, is a homeomorphism for n» =1, 2,...,

(5.2) g, converges uniformly to g,.

We define an equivalence relation ¢ on N as follows:

(t, @) o(t’y 2’) if and only if either (¢, x) = (t’,2’) or t =t =0 and
r(x) = r(z').

Denote by ¢ the canonical mapping from N onto N/o. Put M = N/p

and h,(q) = ¢(g9,(p~"(q)) for each ge Njo and = =0,1,2,... It follows
from (5.1) that
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(5.3) A, is a homeomorphism for n =1, 2, ...
Moreover, by (5.2),
(5.4)  {h,;} converges uniformly to h,.

Since the set of all onto mappings f: M —M belonging to the class 2
is closed in MM and h,e 2 (by (5.3)), we infer that hye 2 (by (5.4)). Since.
9({0} X X) is a component of M and ¢({2/3} x X) is a component of
e} (¢ ({0} X X)), we conclude that h = hylp({2/3} x X) is a mapping from
9({2/3} x X) onto ¢({0}x X) and he 2, because 2 has property (p).
It is obvious that ¢({2/3} x X) =X, ¢({0} xX) =Y and h =r (the
equalities are given with respect to homeomorphisms). Thus re 2.

COROLLARY 2. If a class 2 has property (p) and for each two compact
metric spaces X and Y the set of all onto mappings f: X—Y belonging to
the class 2 is closed in Y=, then 2 coincides with the class of all continuous
mappings onto compact melric spaces.

One can see from the proof of Theorem 5 that

COROLLARY 3. If v is a continuous mapping from a compact metric
space X onto a metric space Y, then there is a compact metric space M such
that X and Y are subspaces of M and there is a sequence of homeomorphisms
of M onto M which is uniformly convergent to a mapping h such that h| X = r.

REMARKS. Recall that a continuous mapping f from X onto Y is
said to be open if f maps every open set in X onto an open set in Y (see [10],
p. 348). The set of all open onto mappings f: X —Y is not closed in Y=,
even if X = Y =1 = [0,1]. Moreover, there is a sequence of homeo-
morphisms of I onto I such that its limit is a monotone mapping which
is not open (for example the sequence {f,} defined in Example 2). Since.
any confluent mapping onto a locally connected metric space is a com-
position of two mappings, one of which is monotone and the other is
open (see [6], Corollary 5.2, p. 109), one can conjecture that any confluent
mapping onto a locally connected metric space is a limit of a sequence
of open mappings. But this is not in general true. This can be seen from
the following

ExAMPLE 3. There are locally connected metric continua M and N
such that there is no open mapping from M onto N, but there is a mono-
tone mapping from M onto N.

Put 4; = {(3,y): —1<y<1l}fori =0,1and M = 4,UA4A,UI. Let
a mapping g: M—g(M) = N be such that ¢ maps I onto a point and
glA; for i = 0,1 is homeomorphism. It is obvious that g is monotone.

Suppose, on the contrary, that there is an open mapping f from
M onto N. Then the set f~!(¢) is 0-dimensional for each yeY, and thus f
is light (for the definition see [12], p. 130). Therefore, by Theorem (4.1)
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of [9], the continuum M must contain a point of order larger than 3
(for the definition, see [4], § 51, I, p. 274), a contradiction.

If Y is a locally connected metric space, then the set of all locally
confluent (see [2], p. 239) onto mappings f: X—Y is closed in ¥Y* by
Theorem 1, because it is equal to the set of all confluent mappings (see [6],
Corollary 5.2). Similarly, if X is a locally connected metric space, then
the set of all quasi-monotone (see [12], p. 294) onto mappings f: X >Y
is closed in Y* by Theorem 1, because it is equal to the set of all confluent
mappings (see [11], Theorem (2.1), p. 137, and Theorem (2.3), p. 138;
see also [1], p. 214, and IX, p. 215). But the set of all locally weakly
confluent (see [9]) onto mappings is not closed in Y¥ even if X is equal
to I and Y is a unit circle. It is easy to see this.

The author is indebted very much to Professor J. J. Charatonik
for his valuable suggestions and help while preparing this paper.
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