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THE STRUCTURE OF . CLOSURE CONGRUENCES

BY

STANLEY BURRIS (WATERLOO, ONTARIO)

The definition of a congruence for a closure space was introduced
in [2] as the natural analogue of the usual concept of congruences for
abstract algebras. The theory of congruences for abstract algebras has
been focused primarily upon the underlying lattice structure (cf. the
Gratzer-Schmidt representation theorem for algebraic lattices [3]), and
in this note it will be shown that the compactness property for closures
leads to a lattice structure on the congruences.

A closure space (C, S) is a set § with a closure operator C (i.e., C is
a monotone, extensive and idempotent set mapping on 8), and a closure
congruence E for (C, 8) is an equivalence relation on S which satisfies
the set inclusion CE(A) « EC(4) for all A contained in 8. In this in-
equality F is interpreted to be the closure operator defined by E(B) = {y:
(@, y>ekE for some xeB}. The family of all closure congruences for (C, S)
is denoted by K(C, S). The most interesting structure on K(C, 8S) has
been obtained when C is compact, i.e., C satisfies C(4) = {J {C(B):
B c A, B finite} for all A contained in §. Compact closures result when
one considers the subalgebra-closure of a finitary abstract algebra.

Let 71(8) denote the family of all equivalence relations on S; with
set inclusion as a partial ordering this becomes a complete lattice, so
let v and A denote the lattice operations. If R;, ieI, is an indexed family

of relations on 8, let (J R; be the set-theoretic union of the R, and let
tel
(U R,)" be the n-fold composition of this relation with itself. Then for
el
E,ell(8), tel, there is the well-known expansion:

V E =(UE)° [=U (U E)"].

iel iel new el

Recalling that A is a closed subset of (C, S) iff C(4) = A, a useful
condition for membership in ](C, 8) is established in the following

LEMMA. Suppose Eell(S). Then EeKR(C, S) iff E (as a closure) maps
closed subsets of (C, 8) into closed subsets.
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Proof. If E<K(C, 8) and 4 is a closed subset, then CE(A) =« EC(4)
= F(A) implies E(4) is closed. Conversely, if F is an equivalence relation
which maps closed subsets into closed subsets, then for A = §

CE(A) « CEC(4) = EC(A).

THEOREM 1 (). Let (C, S) be a compact closure space and let E,eR(C, S)
for iel. Then \/ E;eR(C, 8S), and hence K(C, S) is a complete lattice.
iel
Proof. Let E; be as in the above hypothesis and suppose 4 is a closed
subset of (C, 8). By the lemma it will suffice to prove that (\/ E,) (4)
is a closed set. Let ., ..., i, be a finite subset of I. Then tel

Eyv..vE, =U(&,.. B,

and hence one easily sees that
(B v ... v E) ) =(U®E .. E))A)=UILE.. B ) A)]

u

new new
From the lemma it is immediate that (E; ... E; )*(4) is closed for
any neow, and since {(E; ... E; )"(4): neo} is a nest of sets, it follows
from a theorem of Birkhoff and Frink on compact -closures [1] that
U (B ... B;,)"(4) is a closed set. Thus E; v ... v E; eR(C, S). Let

tm
new

E;‘, jed, denote the family of all finite joins of the E;, ieI. Then clearly
VE; = VE =U K, '
iel jed jeJ
so if A is a closed subset of S, then
(V E) (4) = (U E)) (4) = U Ej(4).
tel jeJ jeJ
E} eR(C, 8) for jed, hence {E;(4)};.,is afamily of closed sets direc-
ted upward, and appealing again. to Birkhoff-Frink’s Theorem, we have
(V E;) (A) is closed.
iel
Although a description of all lattices of closure congruences is not
known, the following representation theorem shows that a large class is
certainly to be included.
THEOREM 2. Let (P, <) be a partially ordered set with zero. Then there
18 a closure C on P such that K(C, P) is isomorphic to the lattice of lower
ideals of (P, <).
Proof. Define a closure C on P by requiring that (i) the closure of
a singleton is just a singleton, and (ii) the closure of any other set is the

(1) The proof of Theorem 1 is a refinement of a result in the author’s Doctoral
Dissertation, University of Oklahoma, 1968.



CLOSURE CONGRUENCES 5

lower ideal generated by that set. Let E<R(C, P). Then E({x}) is a closed
set for each x ¢P, hence the equivalence classes of ¥ consist of single points
and a lower ideal (only one since there is a zero!). It is easily seen that
every such equivalence relation is indeed a congruence, and the isomorphism
between congruences and lower ideals is straightforward.

Concluding remarks. One might hazard a guess that K(C, S)
is a sublattice of 77(8) (as is the case with congruences of abstract algebras).
However, one can find counterexamples on four element sets. Let § = {1,
2, 3, 4}, and let the closed subsets be @, {1}, {1, 2}, {1, 3}, S. Let E, and E,
be the two equivalence relations whose equivalence classes are {1, 3},
{2,4} and {1}, {2,3,4}, respectively. It is easily verified that
E,, E,eQ(C, S) (by applying the Lemma preceding Theorem 1); but
E,nE,({1,2}) ={1,2,4}, which shows that E, n E, does not map
closed sets to closed sets, and hence E, N E,¢K(C, S).

With this example it is apparent that closure congruences are not
going to be a direct translation of the theory of congruences for algebras.
A rather striking observation in working with closure congruences is the
fact that the structure of K (C, 8) may change radically if the compactness
property does not hold — in particular the lattice structure may not
exist; and even with a compact closure the lattice is not necessarily alge-
braic.
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