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In the present paper we study measurable linear operators on Banach
spaces which extend the concept of measurable linear functionals. Measur-
able linear functionals have been studied by a lot of authors, amongst others,
Cameron and Graves [3], Silov and Fan Dyk Tin [8], Gihman and
Skorohod [4], Kanter [6] and [7], Hoffman-Jérgensen [5]. For the defini-
tion and the properties of measurable linear functionals on a real separable
complete locally convex linear metric space we refer to paper [9]. Contrary
to this, measurable linear operators have seldom been treated. The first
authors who considered such operators in the case of the Wiener measure on
the space of continuous functions were Silov and Fan Dyk Tin (see [8]).
Moreover, the theory of measurable linear operators on a separable Hilbert
space has been presented in [4].

Our aim in this paper is to define and to investigate the concepts of
Lusin operators and the operator Riesz property for probability measures on
Banach spaces, analogously to those introduced by Urbanik in the case of
measurable linear functionals (cf. [9]).

Let X denote a real separable Banach space with the norm ||-|| and with
the dual space X* and let u be a Borel probability measure on X. We say
that 4 is a measurable linear operator or, more precisely, A is a u-measurable
linear operator if A is a p-measurable mapping from X into X which is
defined on a p-measurable linear manifold D, with u(D,) =1 and for any
pair «, BeR and x, ye D, the equality-

A(ax+pBy) = aA(x)+BA(y)

holds.

It is evident that each continuous linear operator on X is u-measurable
for every Borel probability measure u.

Urbanik in [9] considered Lusin measurable linear functionals as limits
of sequences of continuous linear functionals with respect to the convergence
u-almost everywhere (u-a.e.). Analogously, it is possible to define Lusin
measurable linear operators. Since in this case one can consider either weak
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or strong convergence of elements in a Banach space, we may define Lusin
operators in the weak or strong sense.

DerFINnITION 1. Let A be a p-measurable linear operator on a real
separable Banach space X. We say that A is a weak (strong) Lusin operator if
there exists a sequence {4,} of continuous linear operators on X such that
the sequence {4, x} is convergent weakly (strongly) to Ax u-a.e., i.e, for every
feX*

f(A,x)— f(Ax) p-ae. (||4,x—Ax||—0 u-a.e.).

Obviously, if 4 is a strong Lusin operator, then A is also a weak Lusin
operator.

Gihman and Skorohod ([4], p. 618) formulated the theorem which states
that for each non-degenerate measure p on a separable Hilbert space X, i.e,
each measure vanishing on every proper subspace, each measurable linear
operator is a strong Lusin operator. Thus they obtained also the equivalence
of both the definitions of a Lusin operator. Unfortunately, the theorem of
Gihman and Skorohod is not true. A simple counterexample, in the case of
measurable linear functionals, is due to Kanter ([6], p. 447). Nevertheless,
one can show that both the definitions of the Lusin operator on a Hilbert
space are equivalent. Our purpose in the present note is to prove this
equivalence, and even in a more general case, namely for Banach spaces with
the approximation property.

A Banach space X is said to be a space with the approximation property
if for every compact subset K of X and for every ¢ > O there exists a finite-
dimensional continuous operator T on X such that ||Tx—Xx|| <& for any
xe K. It is easy to see that each Banach space with the Schauder basis has
the approximation property (see [1], p. 514).

Now we are ready to prove the main result of the present paper.

THEOREM 1. Let X be a real separable Banach space with the approxima-
tion property and let u be a Borel probability measure on X. Suppose that A is
a u-measurable linear operator on X. Then A is a strong Lusin operator if and
only if A is a weak Lusin operator.

Proof. It is enough to show that a weak Lusin operator is strong Lusin
since the converse implication is obvious. Let therefore A be a weak Lusin
operator. To show that A is strong Lusin we prove that for any ¢ > 0 and
o > 0 there exists a continuous linear operator 4 on X such that

(1) pix: |Ax—Ax|| > ¢} <.

Let v denote a probability measure on X given by the formula v(E)
= u(A~'(E)) for every Borel subset E of X. Since each Borel probability
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measure on X is tight (see [2], Theorem 1.4), there exists a compact subset K
of X such that

V(X \K) < 0/2.
Put K’ = A~ !(K). Then
() w(X\K’) < /2.

Now, since X is a Banach space with the approximation property, there
exists a finite-dimensional continuous operator T on X such that ||y — Tyl
< ¢/2 for any ye K. Hence

3) [|[Ax— T(Ax)|| <¢/2 for any xeK'.

It is well known that each finite-dimensional operator T on X can be
represented in the form

=3 ()
k=1 .
where f, ..., f,e X* and {y,, ..., ¥} is a linear basis in T(X) with ||y,|| = 1
for k=1,..., m (see [1], p. 492).

Taking into account this representation, we can write inequality (3) in
the form

|[ax— Y A(Ax)y| <e/2 for any xeK'.
k=1

Hence and from (2) we infer that
(4) uix: |x— ¥ fi(A9p] > &2} < n(X\K) < g/2.
k=1
Since, by the assumption, 4 is a weak Lusin operator, there exists a

sequence {A,} of continuous linear operators on X such that for every
feX*

f(A,x) = f(Ax) p-ae.

Hence for any k =1, ..., m there exists n, > 0 such that
) pix: | fi(An )= fi(AX)] > &/2m} < o/2m.
Now we define a continuous linear operator A on X setting

fT(X) = Zl ﬁc(Auk x)yk'
k=

7 - Colloquium Mathematicum t. 54, z. 2
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Then, combining (4) with (5), we have

pix: |Ax—Ax|| > e} = p {x: |[Ax= Y f(An )W > €}
k=1

< pix: ||Ax—kZlf,‘(Ax) wl| > &/2}
+p{x: ”"Zlfk(Ax)yk_kZIﬁ:(Ank x) v > ¢/2}

<02+ Y, pix: |14 (AX)— fi(A,, X)| > &/2m}
k=1
< 9/24+mg/2m = g.

Inequality (1) is thus proved.

Taking into account (1) and choosing the sequences ¢ — 0 and ¢ — 0 we
can construct a sequence of continuous linear operators on X which is
convergent in the measure u to A, and from this sequence we may choose a
subsequence which is strongly convergent to A p-a.e. This completes the
proof of the theorem.

Both the definitions of a Lusin operator are therefore equivalent.
Further on we shall say directly a Lusin operator without specifying strong
or weak. '

Urbanik in [9] considered also the concept of the Riesz property for a
Borel probability measure u on a real separable complete locally convex
linear metric space X. Namely, he said that such a measure has the Riesz
property if every p-measurable linear functional is a Lusin functional. It is
obvious that each probability measure on a finite-dimensional linear space X
has the Riesz property. The Riesz property has been studied by several
authors. The first non-trivial result is due to Cameron and Graves [3] who
proved that the Wiener measure considered on the space of continuous
functions has the Riesz property. This theorem was strengthened by Kanter
([6], p. 448) who proved that each Gaussian measure with zero mean has the
Riesz property. Moreover, Urbanik [9] and Kanter [7] studied the Riesz
property for probability measures on the I*-space over the unit interval
induced by a symmetric, homogeneous, separable stochastic process with
independent increments, which is continuous in probability.

Analogously to the case of measurable linear functionals we define the
operator Riesz property.

DerINITION 2. Let X be a real separable Banach space. We say that a
Borel probability measure u on X has the operator Riesz property if every u-
measurable linear operator is a Lusin operator.

However, it appears that in the case of Banach spaces with the approxi-
mation property the operator Riesz property yields nothing of importance.
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Namely, a slight modification of the proof of Theorem 1 shows the following
statement:

THEOREM 2. Let u be a Borel probability measure on a real separable
Banach space X with the approximation property. Then u has the operator
Riesz property if and only if u has the (functional) Riesz property.
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