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It is well known that the only non-discrete locally compact topolo-
gical fields are the real number field, p-adic number fields, the fields of
formal Laurent scries of one variable over finite fields and their finite
extensions. In this note we shall give a short proof of the above-men-
tioned theorem.

THEOREM 1. Let (K,J) be a mnon-discrete locally bounded complete
topological field with a non-zero topological nilpotent. Then

(1) of the characteristic of K is zero, then either Q lies discretely in K,
or K contains as a closed topological subfield the reals R or a p-adic number
field Q;

(2) if the characteristic of K i3 non-zero, then K contains as a closed
topological subfield a field of formal Laurent series over a finite field.

Remark. The first part of Theorem 1 remains truc without the
assumption that K has a non-zero topological nilpotent ([7], Theorem 3,
p. 887). However, the original proof is more complicated than the proof
presented here.

LemMMA 1 ([1], Theorem 6.1, p. 165). Let (K,J) be a non-discrete
topological field. Then the topology 8 induced by a pseudonorm if and only if
(K, T) is locally bounded and im K there exists a mon-zero topological nil-
potent.

LEMMA 2 ([4], (2.11) Satz, p. 256, and (2.13) Satz, p. 267). Let K
be the rational number field Q or the rational function field F,(t) over a Galois
field F,. Then every non-trivial pseudonorm on K is equivalent to a pseudo-
norm of the form sup{p;: ¢ = 1,2, ..., n}, where ¢; are non-trivial norms
on K,

Proof of Theorem 1. Lemma 1 implies that  is induced on K
by a non-trivial psendonorm, say p.

Let K has zero characteristic and suppose that @ is a non-discrete
subfield of K. It means that p, = p|Q is a non-discrcte pseudonorm
inducing the original topology 4 on Q. But then, applying Lemma 2, we see
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that p, is equivalent to & pseudonorm of the formsup {g;: =1, 2, ..., 2},
where ¢; are non-discrete norms on Q. Since K is complete in 7, it must
contain the closure of @ with respect to p,, i.e. the completion of @
in p,. Thus, by the Artin-Whaples apprommatlon theorem, K conta.ms as

a topological subring the direct sum Q1® Qz@ .® Q,,, where Q, i3 the
completion of @ in the norm ¢;. However, according to Ostrowski’s
theorem, the ordinary absolute value and the p-adic norm are the only
non-discrete norms on . Since a field has no proper zero divisors, the
direct sum reduces to a field @, of the p-adic numbers or to the reals R.

Now let the characteristic of K be non-zero. As in the previous case,
the topology 7 is induced on K by a non-trivial pseudonorm p. Let { e K
be a non-zero topological nilpotent. The element ¢ is transcendental over
the prime field F, of K since, otherwise, it would be algebraic over F, and,
consequently, a root of unity, which is impossible, ¢ being a nilpotent.
It proves that K contains a subfield FF = F,(t) of the rational functions
of one variable ¢ over F,,. Since  is a non-zero nilpotent element, the pseudo-
norm p, = p|F is non-trivial. Lemma 2 implies that p, is equivalent to
a pseudonorm of the form sup{p;: ¢+ =1, 2,...,n}, where ¢; are norms.
But every non-discrete norm on F is equivalent either to a ¢-adic norm
(g € F,[t] — a prime element) or to the norm ¢,,, where

Poo (%) = exp[deg(g) —deg(f)] (f, g€ F,[]).

It implies that K contains the closure of F, i.e. the completion F
of F in sup{g;: ¢ =1,2,...,n}. The Artin-Whaples approximation
theorem now gives

.F‘,\ =ﬁ'1®ﬁg® ...@.I;'“’

where f‘, is the completion of F at ¢;. Since every ﬁ" is a formal Laurent
series field over F, and since K is a field, n = 1 and the proof is completed.

LeMMA 3. Let (K,J) be a mon-discrete locally compact topological
field. Then

(1) there exists a mon-zero topological nilpotent in K;

(2) T 18 the topology of type V (i.e. for every meighbourhood U of zero
the set (K\U)™' 48 bounded);

(3) if K has zero characteristic, then I |Q is non-disorete.

For completeness of the main result we shall present detailed proofs.

Proof. Let A be a base of the neighbourhoods of zero in (K, 7).

(1) Let us take relatively compact U €% and let V €A be a proper
subset of U. Since U is compact, U is bounded, so there exists W U
satisfying UW <« UW < V. Since (K,J) is non-discrete, we can find
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a non-zero x € W with
(%) 17:Ugﬁwg...gﬁw”:Um"gﬁw"“:...
Let y be a cluster point of the set {&": n € N}. Then
N Ts" = Uy.

neN
We are going to show that y = 0. Otherwise, since Uy is compact,
we should have
N Ts" = N(Ozx)s™ = (Tx)y.
neN neN
Thus Ury = Uy and y # 0 would imply Uz = U, which contradicts ().
(2) Since (K, ) is a locally bounded topological field, we have
A = {aU: a € K*} for every neighbourhood U of zero. We can suppose
that U is an almost-order, ie. UU < U, 0,1 U, K* = U*(U*)?, and
2(U+ U) c U for suitable z € U, z 7 0. Hence it is sufficient to show that
(E\TU)™! is bounded. Let # € K be a non-zero topological nilpotent.
Suppose, on the contrary, that (K\ U)~! is not bounded. Then there exists
a sequence (a,) such that both a;'2" and a, lie in K\ U. Putting b, = a, 2"
we have a,b, = a". Let us note that for every a € K* there is a smallest
number #(a) with az’® e U. Then

ar'@1e E\NU and ar'®ecK\2U.

Finally,
a’® e Un(K\aU).

Now let us take a, (respectively, b,) for a and put
6, = 6,8, d, =b,a'®), A= TUn(K\2l).

Since U is bounded, 4 is compact and the sequences (¢,) and (d,)
have some cluster points in 4, say ¢ and d. Since o, , d, € K\ U, the cluster
points ¢ and d are both non-zero. But the sequence

0,8, = (a,,w‘(a"))(bnw'(bﬂ)) — g HHan)+(by)

tends to zero, which contradicts the continuity of the multiplication
in (K,7) ([6], Satz 8, p. 265).

(3) Suppose that 7 |Q is discrete. We shall prove that this case never
appears. Let # be a non-zero topological nilpotent in K, and U — a rela-
tively compact (hence bounded) neighbourhood of zero in K. We can
suppose that U is an almost-order defining the topology J in K. Then
the sets 2" U (n e N) form a base of the neighbourhoods of zero in K.
If 7 |Q were discrete, then Q* would be disjoint with some a™U, i.e.
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Q* <« K\2"U. It means that
Q* —_ (Q*)—l - (K\mﬂ U)-—l.

Since the topology Z is of type V, (K\z"U)™! is bounded, and so
is Q*. Thus, there exists me N with @*s™ < Uz, Q* = Us'™™, or
Q*c Us'~™. Since U is compact, the inclusion @* = Us'~™ would imply
that the set N = Q* has'a convergent subsequence. This contradicts the

assumption that 7 |Q is discrete ([3], Hilfssatz 5, p. 66).

LeMMA 4. Ewvery locally oomjmct topological vector space over a normed
complete field is finite dimensional.
For an elementary proof see [8], Theorem 3.6, p. 23.

THEOREM 2. Let K be a field and let (K,T ) be a non-discrete topolo-
gical ring. Then the following conditions are equivalent:

(1) K ¢8 a locally compact topological ring;

(2) K 18 a locally compact topological field;

(3) K 8 a finite extension of a field of one of the following types:
R, Q,, F (X), F,{X} (see [10] for the last two).

Proof. (3) = (1). Since R, @, F,,(X), and F,{X} are all locally compact
in the topologies induced by suitable norms, and they are complete,
the only topologies on their finite extensions are the product topologies.
This implies that the finite extensions of the above-mentioned fields are
locally compact rings in the product topology.

(1) < (2). Indeed, the implication (2) = (1) is trivial and (1) = (2)
follows from [2], since the multiplicative group K* of K is a locally com-
pact space and since multiplication is continuous (so division must also
be continuous).

(2) = (3). Since K is locally compact and non-discrete, it has a neigh-
bourhood U of zero such that U is compact. But any compact set is
bounded, so the topology J is locally bounded. Moreover, in K there exists
& non-zero topological nilpotent (Lemma 3). Lemma 1 implies that the
topology  is induced in K by a non-trivial pseudonorm. Since (K,J)
is locally compact, in the case of zero characteristic the topology J is
non-discrete on Q. Thus Theorem 1 implies that the reals, a p-adic number
field, or the Laurent series field over a finite field is a closed topological
subfield of K. Finally, it follows from Lemma 4 that K is a finite exten-
sion of one of the above-mentioned fields.



LOCALLY COMPACT FIELDS, 111 317

(1]
[2]
(3]
[4]
(5]
(6]
[7]

(8]
(9]
[10]

[11]
[12]

REFERENCES

P. M. Cohn, An invariant characterization of pseudovaluations on a field, Pro-
ceedings of the Cambridge Philosophical Society 50 (1954), p. 169-177.

R. Ellis, A note on the continuity of the inverse, Proceedings of the American
Mathematical Society 8 (1957), p. 372-373.

A. M. Fraedrich, Beitrdge sur Theorie der topologischen Kirper, Dissertation,
Braunschweig 1965.

K. Kiyek, Pseudobetragsfunktionen auf Quotientenkorpern von Dedekindringen,
Journal fiir die reine und angewandte Mathematik 274-275 (1975), p. 244-257.
H.J. Kowalsky, Zur topologischen Kennzeichnung von Korpern, Mathematische
Nachrichten 9 (1963), p. 261-268.

M. Moriya, Zur Theome der halb-topologischen Gruppe'n und Korper, Mathema-
tical Journal of Okayama University 1 (1952), p. 109-124.

A. ®. Myrunun, ITpumep Hempusuasshoii Monosozusayuu nNOAR PAYUOHAAL-
nuix wuces. Iloanvie AokasbHo ozparuuenHbie noar, HsBecTna Ananeunn HaYK
CCCP, cepuna maremarmueckada, 30 (1966), p. 873-890.

H. H. Schaefer, Topological vector spaces, 3rd edition, New York - Heidelberg -
Berlin 1971.

W. Wieslaw, On some characterizations of the complex number field, Colloquium
Mathematicum 24 (1972), p. 139-145.

— A characterization of locally compact fields of zero characteristic, Fundamenta
Mathematicae 76 (1972), p. 149-15656. (Errata, ibidem 82 (1973), p. 91-92.)

— A characterization of locally compact fields 11, ibidem 88 (1975), p. 121-125.
— On topological fields, Colloquium Mathematicum 29 (1974), p. 119-146.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCLAW

Regu par la Rédaction le 20. 4. 1976;
en version modifiée le 21. 5. 1976



