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REMARKS ON C-INDEPENDENCE
IN CARTESIAN PRODUCTS OF ABSTRACT ALGEBRAS

BY

J. ANUSIAK AND B. WEGLORZ (WROCLAW)

A subset B of an abstract algebra U is C-independent if no beB belongs
to the subalgebra C(B\ {b}) of A generated by B\ {b}.

The purpose of this paper is to explain relations between some kinds
of independence on axes and the C-independence of subsets of products
of abstract algebras. We also give examples which show that none of
our results can be strengthened.

In section 3 we show that products of algebras do not preserve con-
dition of exchange of independent elements.

For terminology and notations see [2].

1. C-independence. First let us state an obvious lemma without proof.

LEMMA 1.1. Let h be a homomorphism of an algebra A onto B. If
{boy --+y by_1} 18 C-independent in B, and h(a;) = b; for 1 =0, ...,n—1,
then {ay,...,a,_,} is C-independent in N.

Now let <Uir (T # D) be a system of similar algebras and let U
be their Cartesian product. Let us fix t,eT and let a,,..., an_leA,o. Put

49 = fa}yx [ 4, fori=o0,...,n—1.

teIN\{tg}

Let {poy-..,p,_,} be a subset of [[ A4, such that p;ed® for
teT

t=0,...,n—1. Every set constructed in this way is called a selector

of {ay,...,a, ,} in the product [] 4,.

teT

PROPOSITION 1.2. Let W =[] A, (T # Q). For an arbitrary index
teT

toeT choose a set {a,, ..., a,_,} C-independent in A, and let {Poy -y Pu_v}
be a selector of {ay,...,@a, ,} in A. Then {py, ..., P,_1} s C-independent
in U.

Proof follows from Lemma 1.1, because projections are homomor-
phisms.
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PROPOSITION 1.3. Let W be an algebra and let {ay, ..., a,_,} be inde-
pendent in A and {by, b,} be C-independent in WA. Then {(agy by)y ...y (@y_15 Do)y
(@p_15 b1)} 8 C-independent in A2

Proof. Suppose that

(a) @ =f(Aoy evey B_1y Qiyqyenny y_qy 8y y) for i#n—1 and b, =
= f(bgy « ..y boy by).

The first equality contradicts our assumption that {a,,...,a,_,}
is independent in .

(b) @,y =Ff(@oy...) @y_1)y; bo = f(boy ..., by by).

Using independence of {aq,...,a,_,}, we have f = ¢™, but this
is impossible in view of b, # b,.

(€) @p_y = f(@oy -vy @y_1)y by = f(boy .-y bo)
Since {b,, b,} is C-independent in A, this is impossible.
It is also easy to verify the following proposition:

PROPOSITION 1.4. Let A =[] A, and let P be a subset of A such
) teT

that, for each teT, its projection m,(P) is C-independent in W,. Then each
subset Q= P satisfying the condition

V H VIp#q=>p)+q)]
PeQ teT qgeQ
18 C-independent in A.
In some cases construction of C-independent sets described in Pro-
position 1.4 gives maximal C-independent sets. This is shown in the
following example:

ExampLE 1.5. Let A =(0,1,2,3;f), where the operation f is
defined as follows:

f(x,y,2) = the fourth element of 4 if x,y,2 are all different,
fl@,z,y) =flz,y,2) =fly, », ») = .

In the algebra A each three-element subset is C-independent. Let
us consider A2 and let @ = {(0, 0), (1, 0), (2, 1), (2, 2)}. It is clear that
@ satisfies the hypothesis of Proposition 1.4 (for P we set {0,1, 2} x{0, 1, 2})
and that @ is a maximal C-independent subset of =

More C-independent sets can be obtained in the Cartesian square
of a given algebra if we put a stronger assumption on the set P.

THEOREM 1.6. Let P, and P, be independent sets in an algebra A. Then
each subset @ of P, X P, satisfying the condition: if (x;,vy;) amd (x;, yi)
belong to Q, then either (z, ¥;)e@ =>o =m; or (v,Y;)e Q@ =>& = x;, 18
C-independent in AZ.
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Proof. Suppose that (z,y)e @ and (v, y)<0(@\{(%,y)}). Then there
is an algebraic function f such’ that

(my ?/) =f((m17 yl)? seey (wrn ?/n))’

where (2;, ¥;) eQ\{(x, ¥)}. In other words, x = f(x,, ..., %,) and ¥ = f(y,,
«eey Yp). Of course, it must be ze{x,, ..., z,}, since the set {z, %y, ..., ®,}
is independent in A as a subset of independent set P,. Thus we have

(%) @ =F(Bry ooy @y By ooy By By g1y veesy Bgy By evey By By ppi1y +o0)s
— — — —
7, times r times

where all indexed arguments are different from z. From the definition
of @ there is an index s of the form s = ¢;+j; (where j; < r;) such that
Yy # Y, if (4, ¥;) e @. This means that in the equation

(%) Y =F Y1y -y Yn)

there is an argument (the same y,) standing in the place s occuﬁied by
x In (*).

Since in equalities (*) and (**) all arguments are independent, these
equalities will hold also after any transformation of U into A. Now apply
in (*) the transformation

x>z, ;> if o #a, .
and in (**) the transformation

Ygi+i; — Ys (Where j; <7;), ¥;—>y in other cases.

We have
T =f(Lyy.ery Byy By eoey By Dy eeey Ty ced)y
q) times r) times q; times
Yy =f('3/’ ceey ?/’g/sy ey Y5y Yy Y, )7
¢; times r; times gy times

but this is impossible in view of y # y, and ¢ # x;. This completes the
proof.

2. Other independences. Except for C-independence and independence,
there are same other conditions given by Schmidt [56] (see also [3]).
Namely, a subset I of an abstract algebra is said to be S;-independent
(¢ =1,2,3) if it satisfies the following conditions:

(8,) For each zel, O({xr}) N C(I\{r}) = C(D) and I N C(D) =0O.

(8,) For each two disjoint subsets A, Bof I, C(4) n C(B)= C(0)and
InCY) =0.

(8;) For each two subsets A, B of I, C(4) N C(B) = C(4 n B) and
InC©) =09.
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ExAMPLE 2.1. Proposition 1.1 fails for §;-independence. Indeed, let
A =(0,1,2,3;f), where f(0) =f(1) =f(2) =2 and f(3) =3, and let
B = (a,b,c;f) be a homomorphic image of A by the function »
defined as follows: h(0) = a, h(1) = b, h(2) = h(3) =¢. It is easy to
see that {a, b} is §,-independent in B, but {0, 1} is not §,-independent
in .

Let us observe that in Example 2.1 the set {a, b} is independent
even in B.

ExAMPLE 2.2. Proposition 1.2 fails for §,-independence. It suffices
to consider A X B, where A and B are such as in Example 2.1.

Moreover, Example 2.2 shows that a selector of an independent set

fails to be S,-independent in the product.
Proposition 1.3 can be generalized to S;-independence as follows:

ProrosiTiON 2.3. Let U be a given algebra, {a,, ..., a,_,} be inde-
pendentin A, and {bo, b} be S;-independent in W. Then the set I = {(ay, b,),
oy (@p_1y Do)y (@u_y,y by)} 98 S;-independent in 2 (i =1, 2).

Proof is a.nalogous to that of Proposition 1.3.

We do not know whether Proposition 2.3 remains true for 2 =3
(P 701). Independence has not this property:

EXAMPLE 2.4. Let B* be an upper Post algebra, that is * = (0, 1; p*),
where p*(z,z,y) =p"(z,y,2) = p*(y,x,x) = 2. Consider an algebra
K = P* x P*. Then {0, 1} is independent in P*, but {(0, 0), (0, 1), (1, 1)}
is not independent in K.

We can show that Proposition 1.4 fails for §,, S;, and 8;. The
additional assumption that projections of P are independent is of no
avail.

ExXAMPLE 2.5. Let us consider the product A x B, where A and B
are the same as in Example 2.1. Put P = {(0, a), 0, b)}. It is clear that
P satisfies the condition from Proposition 1.4 and the sets {0} and {a, b}
are independent in U and B, respectively. But P is not 8;-independent
in Ax B for ¢ =1,2, 3. '

Note that if in Proposition 1.4 we assume that W, = A, then the
following holds:

PROPOSITION 2.6. Let A = BT and let P be a subset of A such that,
Jor each teT, its projection m,(P) is an independent subset of B. Then each
subset Q <= P satisfying the condition

VH VIP#q=p0)+*q0)]
peQ teT geQ
28 S;-independent in .

We do not know whether Proposition 2.6 remains true for S, or

S; (P 702).
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3. EIS and products. In this section we give an example to show
that products do not preserve condition of exchange of independent
sets denoted EIS (for the definition and properties of EIS see, e.g. [2]
or [4]).

ExamMpLE 3.1. Let K be the class of all semigroups satisfying the
equations: a2 = y%, xyz = 2%, vy = yx. It is clear that

(i) It A is free over K and has two K-free generators, then EIS
holds in A.

(ii) If B is free over K and has three K-free generators, then EIS
does not hold in B.

(iii) B can be embedded into A2

From (i), (ii), and (iii) we infer that K-free generators of B form
independent sets in A% and so that EIS is not invariant under products.

Remark. B. Jonsson has communicated in a letter to E. Marczewski
that from [1] it follows

THEOREM 3.2 (Jénsson). An algebra A has EIS if the class of free
algebras over HSP(A) (it is, the smallest equational class containing )
has amalgamation property.

Our example shows that the converse théorem is false (this fact
was known also to S. Fajtlowicz). Indeed (under notation of Example
3.1), A has EIS but the class of all free algebras over HSP(A) has not
amalgamation property, since B has not EIS and HSP(UA) = HSP(B).
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