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Introduction. The classical Markov inequality for polynomials

(1 Sup |P'(x)] < (deg P)? ISUD [P (x)|

Ix|<1 x|<1
is closely related to the polynomial division inequality
(2) Sup |P| < (deg P+1)>Sup|(x—a)P(x)] (aeR).

x| €1 x| <1

Actually it is not difficult to show that (2) can be established using (1) and
that (2) imples immediately

Sup |P'(x)| < 4(deg P)’ IS|UP [P (x)].

jx] <1 x| <1
The aim of the first part of this paper is to extend this kind of results to
subsets of RY: we prove that if Q is a bounded subset of R¥ and if we have a
Markov inequality in [7(Q), then we have a polynomial division inequality
in [7(). We know that Markov inequality holds in I[7(Q) if Q is a bounded
Lipschitz subset of RY (see [1]), but the most general known subsets of R¥
for which we have a Markov inequality in L™ are uniformly polynomially
cuspidal sets, recently introduced by Pawlucki and Plesniak [3]. In the
second part, we prove that we also have a Markov inequality in I? for these
subsets, and therefore a polynomial division inequality in I?, and we give an
application to characterization of C*-functions.

0. Notation and definitions. Throughout this paper we use the classical
multivariate notation:
N is the set of non-negative integers;
for a = (a,, ..., ay) NV,

N
lal = ) a;
i=1
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a N (a
G)-11()
We denote by B(c, r) the N-dimensional ball with center ceR" and

radius r > 0, by H, the set of polynomials in N variables of degree at most n,
and by [?(Q) the space of measurable functions satisfying

If o= [f1f CPdx]"" <0 (1< p <o),
) _

for a and b in N¥,

ISl = ess S;lplf(X)l <o (p= ).

Let 2 < RY and f be a real-valued function defined on Q. We say that f
vanishes on Q at order at most d if for any x €Q there exists « € N¥ such that
le| <d and f®(x) # 0.

1. Markov inequality implies polynomial division inequality.
1.1. Statement of the result. In this part, Q is a bounded subset -of R",
pe[l, ], and we assume that a Markov inequality holds in [P(€), i.e.:

(MI) There exist two positive constants C and r = 1 such that, for every
PeH,,

“Dl IJ”PQS Cn’”P”p.Q (l = 19 LY N)

We shall prove the following result:

THEOREM 1 (with_ previous notation and under assumption (MI)). Let
f €C*(R™) vanish on Q at order at most d with rd <s. Then there exists a
positive constant C(f, Q) such that for every PeH, we have

IPlp0 < C(f, Qn|IPfll,.0  (n>0).

1.2. Basic results about Markov inequality. First we recall the standard
Markov inequality on an interval ([2], pp. 133 and 141): let a <b <c <d
and P be a polynomial of degree at most n; we have

NP\l wo,ip.c1 < C (b, )P ||Pll .35
IP'll op.g < Cla, b, ¢, d)n||P|| o (a,a1-

We shall use an immediate extension of the second estimate to rectangular
parallelepipeds:

LemMma 1. Let I1, and II, be open rectangular parallelepipeds. Assume
I1, = I1,. Then there exists a constant C,(I1,, I1,) such that for any PeH,
we have

1PN, py < U1y, M) n|Pllo,m, (ol =1).
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1.3. Approximation of a function and its derivatives on a subset of R".
A fundamental tool is the following

Lemma 2 ([4], Theorem 4.5, p. 167). Let IT be a rectangular parallelepi-
ped and f €eC°(II). Then there exists a positive constant C(IT) such that, for
any neN*, a polynomial R,€H, can be found satisfying

Ilf=Rllw,n < CUD n™*Max [/l o,n} -

laf=s

COROLLARY 1. Let Q be a bounded subset of R and f €C*(RN). Then
there exists a constant C,(f, ) such that for any ne N* one can find R,€H,

satisfying
P =R o< Co(f, Q= (] <9).

Proof. We choose open rectangular parallelepipeds I, ..., II,_, such
that QcIly, II; cIl;,, (i=0,1,...,5—2). Then, by Lemma 2, for every
neN* one can find R,eH, such that

If=Rullo,m_y < CUT—1)n™*Max I f®ll,g,_,} = Cin7",

all constants C,, C,, ... depending on f and Q. For every x€ll,_,,

f(X)—R,(x) = ZO(R2k+1,,_R2k,,)(x)'
k=

We now prove that for |y =1 the series

f (Ry+1,— Ry )
k=0
is absolutely convergent in L*(II,_,). Using Lemma 1 gives
R s 1, = R )M o,
SCy(My_y, Oy_3)- 2" 'l R y+1,— R Nloum, _,
S Cy(Tomy, - 2 n(IR w1, = Mew,my— y HIS =Ry Sl )
<C, 2*1n(2kn),

and then
e 0}
1-
Y MR x4 1,— Rk )Moy, < C3n' %,
k=0

whence
I/~ RVl o, , < Cam' ™%
Iterating this process leads to

IS~ R,y < Can™* (hl =1,..., s—1),

9 — Colloquium Mathematicum 57,1
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which proves the corollary due to the fact that
I(f=R)M w0 < WSf—R)N iy, (=0, ...,5=1).

1.4. Polynomial inequalities.

LemMA 3 (with previous notation and under assumption (MI)). Let
deN. Then for every A = Q and ReH; satisfying the condition

{there exists a € NN such that |a] <d and |R®(x)| = my >0 (x €A)}
one can [ind a constant C, such that for any ¢ > 0 and every PeH, we have
3) IPllpa < Camg e~ (n+)" || PRIl o+l Pll,, -

Proof. We proceed by induction on the length of a.
(1) Assume || = 0. Then, for x€A,

IR(x) 2my and [|P(x)| <mg'|P(x)R(x).
Therefore
IPllp,.a < mg  ||PRI|p,4 < mg*||PRI|,, o+ ||Pll,.q

(2) Let dy < d. We assume that (3) holds when |x| <d,. Let « be such
that |a| =d, and prove that (3) is still valid. Let

D="'keNN: 0<|k], 0<k;<a; (i=1,...,N).
From the Leibniz formula, if x €A,
PG < mg* {I(PR)"’ I+ % (Z)IR‘“"" () P (x)l}.
keD

We set

N+d,
L=
()

(there are at most L—1 terms in the sum Z) and

o

B, = %x €A: |R“™ M (x) < (k

-1
) moe(Cn)~ ™M L™2 k ED}.

If xeB,, then
IP()] < mg ' [(PRY® (%) +¢L™2 Y. (Cn)~ ™ |P® (x)).
keD
This yields
IPllp8y < Mo * I(PRY®|, 5, +€L™2 Y, (Cn)"™MIPY)| 5

keD

< mg (PRl g +eL™2 ¥ (Cn) ™™ ||1P¥)|,, g,

keD
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and using (MI) we obtain
I1Pllp8, < Mg * C® (n+ )" || PRI| 0+ 6L || Pl

(there are less than L terms in ). For every x €4\ B, there exists k €D such
that

-1
) IR®™8 (x)] > (:) moe(Cn)~ M L~2,

Then one can share 4\ B, into at most L—1 disjoint subsets B; such that for
every xe€B; there exists an index k for which (4) holds true. Now, by
induction, since |k| > 0, on each B;, replacing ¢ by ¢/L, we have

do—1

1P, < (€Y L2 (:)(mo & Cag-1(L/e)

x(n+7) " PR, o+ /L) | Pll -

Now, using the inequality
IPllp.a < 1IPllp5q+ 2 I1Pll,.s;

yields
IPll,.a < mg* Cage” O (n+)"°lIPRI|, 0 +ellPll,.0
with
Cop=C+L" "y, ¥ (Z)c'*',
keD

which proves the induction step.

15. Proof of Theorem 1. For every aeQ there exists a« e N¥ such
that |x| < d and f®(a) # 0. Let ¥, be a neighborhood of a such that, for any

xeV,NnQ,

If@ )] > 31 @).

Since Q is compact, it can be covered by a finite number of such neighbor-
hoods denoted by Vays ---s Va,- Now, for iell, ..., k] there exists o' eN¥

satisfying || < d and such that for xeV, NQ we have

) IF< (%) > 311 (a).

On the other hand, d <s and there exists n, such that for n > n, we have

Ca(f, Dt~ < $Min {1 (@)]},

where C,(f, Q) is the constant of Corollary 1. Then for n > n, the polyno-
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mial R, of Lemma 2 satisfies

[P )-RO@I <3 @ (xeV, 0@ i=1,..., k),
and from (5) we get
(6) RO = @)  (xeV, nQ i=1,... k.

To complete the proof we need the following

LEMMA 4. There exists a constant C;(f, ) such that if R,eH, is the
polynomial of Lemma 2, then for any PeH, (n > 0) we have

IPll,. < C3(f, Qn*||PR|,,q.
Proof. Applying (6) and Lemma 3 on every V, nQ with ¢ = 1/2k yields

IPlp,v,.~a < <@/Nf ) (g, )l) Ca(2k)* (2n)? || PR Jlp, 0+ =7 IIPII,, o
Therefore

k
1Ploa < % I1Plhyyna

ko
<4C, 2k {3 1S @)~ }2ny IPR Iy, 0+ 4 1Py, 0
i=1

and then
IPll,.@ < C3(f, Qn|IPR,,, o
To complete the proof of Theorem 1 observe that from Lemma 4 we get
IPll,,0 < C3(fs @ n™ UIP Ry =Ny, 0+ 1PS I, 0)
< C3(f, Q™ Pl 0lIRy =Sl w.0+ 1Pfll,0)
and using Corollary 1 we obtain
IPllp.0 < Ca(f, Q= *||Pll,. 0+ C3(f, Q) n||Pf|l,, 0
Let n, be such that C,(f, Q)ny~* <4 (which is possible since rd <s). Then
for n > ny, we get
™) IPllp,0 < 2C5 (f, Q) n™ || Pf||,, 0,

which proves the theorem for n > ny. If n < ng, (7) holds true due to the fact
that a linear mapping from a finite dimensional space into another is always
continuous.

2. Markov inequality holds in [’-spaces on sets with polynomial cusps.

2.1. Uniformly polynomially cuspidal sets. Uniformly polynomially cusp-
idal sets (UPC sets) have been introduced by Pawlucki and Plesniak in [3].
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DEerFINITION. A subset Q of RY is uniformly polynomially cuspidal if there
exist positive constants M, m and a positive integer k such that for any x eQ
one can choose a polynomial map h,: R — R" of degree at most k such that

(i) h.((0, 1]) = 2, h (0) = x;

(ii) for any xe€Q and any t€[0, 1],

dist (h, (), RV\ Q) > Mt™.

UPC sets are a large class of sets. Examples: Lipschitz sets, bounded
convex sets with non-void interior, fat subanalytic subsets of R are UPC
sets (see [3] for details).

In the following we assume m > 1, which is not restrictive. Pawlucki and
Plesniak proved ([3], p. 469) that Markov inequality (MI) holds in L® on
UPC bounded subsets of RN (and C"). The proof of this result shows that r
=2+2m.

2.2. Comparison of uniform and L[P-norms of polynomials.

THEOREM 2. Let Q be a bounded UPC subset of RN. For any polynomial
PeH, and any p> 1 we have

IPll o, < 2[K (p+1)...(p+ N)]2 07| |P||, o
with

K = [(4k¥)™Max (M1, 2CNY3]V/[V, N1],

where M, k, m are the constants of the definition, C, r the constants of (MI),
and Vy the volume of the unit ball in RV,

Proof. Let p>1 and PeH,. Let aef be such that ||P|| .., = |P(a)|. By
the definition of a UPC set, for any ¢t €[0, 1] we have

|P(h, (1)) = P(a)| = |P(h,(1))— P(h, ()] =12(1)—Q(0),

where Q is a pozlynomial of a single variable of degree at most nk. Then, due
to (1),

)
|P(h,(t)— P(a)| < tSup|Q'| < 2tn*k?Sup|Q| < 2tn* k?||Pl| ,0-
[0,1) (0,1]

Let B = B(h,(t), Mt™). For any x€B
P(x)— P(h (1)) = (x— h,(1)) -grad P(y)

for some y in the segment with ends at x and h(t). Then using (MI) for p
=00 we get '

|P(x)— P(h, (t))| < dist (x, h, (1) CNV2yr 1P| 0, 25
and therefore

|P(x)— P(a)l < |P(a)|(2tn® k2 + CN'? n dist (x, h, (1)),
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whence
@®) |P(a)l(1—2tn? k= CNY2n' dist (x, b, (1)) < |P(x)] (x€B).
We now choose
) t = (1/(4k?)[Max (1, 2CM N2~ mp=rim
Since r = 2+2m, we have
t <1/(4n*k? and 1-2n%k?>1)2.
Moreover,
CN'2p dist(x, h,(t)) < CNY2 0" Mt™ < 1/(2(4kH)™) < 1/2.

Then, by (8),

|P(a)|(1—2CNY2n" dist(x, h, (1)) < 2|P(x)] (x€B).
We have

2CMN'/? < (4k?)™Max(1, 2CMN'/?)

and

2CNY2n < (4k*)™Max(M ™!, 2CNY?) " = 1/(Mt™),
which implies

|P(a)| (1 —dist (x, h, (£)/(Mt™) < 2|P(x)] (x€B).

Integrating the p-th power of both sides of the last estimate on B we have

Mt™
IPI%,o NV | (1—R/AMt™)° RN~ dR < 2°||P||5,q,
, 3 P

which is the same as
Pl @ NV (Mt™N (N =1)Y/[(p+1)...(p+ N)] < 2°||PI5, o
Replacing ¢t by its value (9) leads to the inequality of Theorem 2.

2.3. Comparison ‘of different LP-norms for polynomials.
COROLLARY 2. Let q=p=>1 and Q be a bounded UPC subset of R".

Then for any PeH, we have
1Pll0 < 20K (p+1)....(p+ NYJHP =0 i =aion ),

where K is the constant of Theorem 2, and r the constant of (MI) with p = oo.
This corollary is a generalization of a similar result proved by Timan
when ©Q is a segment of the real line (see inequality (36) in [5], p. 236).
Proof. We have
1Pl o = [IP()|""P|P(x)|Pdx < ||Pll% &lIPII5, o

Q
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and, using Theorem 2, we get
IPllg.0 < 227 [K (p+1)....(p+ N)]#P =t w0~V P,

Rising the two sides of the last inequality to the power 1/q gives the required
inequality.
2.4. Division inequality and Markov inequality in LP-spaces.
CoROLLARY 3. Let p=>1 and Q be a bounded UPC subset of R¥. Then
fJor any PeH, we have
1Pl < 2[K'(p+1)...(p+ N)J P TNV IPY o (laf = 1),

where K’ is a constant depending only on Q.
Proof. Clearly, using (MI) and Theorem 2 gives

1P, < [Mes ()17 || P9]| .0 < [Mes ()17 C1' || Pl o,
< 2[Mes(@QK (p+1)...(p+ N)1V2n* VP | Pl q.

Theorem 1 yields

CoRrOLLARY 4. Let p=1, Q be a bounded UPC subset of RN and
f €C*(Q) vanishing on Q at order at most d with rd(1+(N/p)) <s. Then there
exists a constant K" depending on €, f and p such that for any PeH,

|Plly,o < K" 0 NI || Pf)| .
25. Characterization of C* -functions. A sequence (u,) is said to be
rapidly decreasing if and only if, for any j > 0, Lim(”u,) = 0.

LemmA 5. Let Q be a bounded UPC subset of RN, and f a real-valued
function defined on Q. Then (distu,( oS H,))..n is rapidly decreasing if and

only if (disth‘ o (s H))nen is rapidly decreasing.
Proof. Assume (distL,( Q,( Sy H))pen is rapidly decreasing. For every n,
let P, be such that
1f= Pully,q = dist, , , (f; H,).
Clearly, in L[7(9Q),

i=0

f=Po+_z (Pi+;—P) and f_Pn='Z(Pi+l—Pi)°
Now, by Theorem 2, for any ieN:

IP; 41 = Pillo,0 < Cs i+ 1)™M?||P; —Pil,.0
< Coli+1y™P 2dist (/s H),

ao

whence we conclude that P,+ Z (P;+, — P;) converges to fin L®(R2). More-
i=0
over,
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dist, o, (f; Hp) = 1f = Pull o, 0 < z IP;+1 = Pill o, 2

8

1]

< X 2G4 (i 1)yNPdist, o (f, H),

which guarantees that (disthm( S, H))nen is rapidly decreasing.
The converse part of the lemma is proved in the same lines except that
we need not Markov inequality since for any measurable function f we have

1150 < (Mes ()71l fll «,o-

ProposITION 1. Let p > 1 and Q be a bounded UPC subset of R". Then a
real-valued function f defined on Q is the restriction to Q of a C®-function f in
R" if and only if (distL,( o H))nen is a rapidly decreasing sequence.

Proof. This is an immediate corollary to Lemma 5 and a theorem by
Pawlucki and Plesniak ([3], Theorem 5.1, p. 472), establishing Proposition 1
in the case p= + .
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