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ON A QUESTION OF FREMLIN
CONCERNING ORDER BOUNDED AND REGULAR OPERATORS

BY
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For vector lattices £ and F (always assumed Archimedean) we de-
note by L°(E, F) the space of all order bounded operators (1) from E into
F, and by L'(E, F) the subspace of L°(E, F) consisting of all regular
operators. The cone of positive elements in E will be denoted by E..

If F is a K-space (i.e., Dedekind complete vector lattice), then the
well-known Kantorovich theorem asserts that L°(E, F) = L"(E, F) and
L' (E, F) is a K-space for every vector lattice E (see, e.g., [3]). On the
other hand, it is also known that generally L°(E, F) # L' (E, F) (see, e.g.,
[1]). In connection with these two facts D. H. Fremlin suggested (in a letter
to the first-named author) the following question:

(Q1) Does there exist a vector lattice F such that F is not a K-space
but for every vector lattice E the equality L°(B,F) = L"(E, F) holds?

Proposition 2 below gives a positive answer to this question. In
connection with this result it is natural to ask a question stronger than
(Q1), namely:

(Q2) Does there exist a vector lattice F' such that F is not a K-space
but for every vector lattice F the equality L’(¥,F) = L'(E, F) holds
and, additionally, L™ (E, F) is a vector lattice?

The Theorem in the sequel gives a negative answer to (Q2).

For a vector lattice F we denote by F its Dedekind completion and
we identify F with its canonical image in P.

PROPOSITION 1. Let F be a vector lattice such that there exists an operator
R : F — F with the following property:

(*) for every £ € P, R& > 4.

Then the equality L' (E, F) = L°(E, F) holds for every vector lattice E.

(*) We recall that an operator 7' : E — F is said to be order bounded (respectively,
regular) if T maps order bounded subsets from E into order bounded subsets in F
(respectively, if T is a difference of two positive operators).
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Proof. Let T € L*(E, F). Thus, moreover, T € L*(E, ¥) and, accord-
ing to the above-mentioned Kantorovich theorem, there exists an opera-
tor T, € L*(B, F) (a positive part of T). We put T, = RT, . It is clear
that T, e L*(E, F) and T, > 0. Further, for every z € E, we have

Te<T,»<RT v =T,

and hence T e L"(E, F).

PROPOSITION 2. Let Q be an extremally disconnected Hausdorff compact
space with the following property:

There exist two distinct non-isolated points q,, g, € Q and a homeomor-
phism f: @ — @ such that f(q,) = g, and f(g:) = ¢:-

Then in the vector lattice C(Q) of all continuous functions on @ there
exists a vector sublattice F' which is not a K-space but has property (*).
~ Proof. Let us put F = {y €C(Q): ¥(¢1) = y(g:)}. It is clear that
¥ = C(Q) # F. Hence F is not a K-space. Now we define an operator
R: F — F by setting

(B9) (@) =9 +9(f(@), F€C@Q), ¢€Q.

It is obvious that the image of R belongs to F and for every 4 € (@),
we have RyJ > 4.

Remark. Of course, there exist plenty of extremally disconnected
Hausdorff compact spaces ¢ with the property formulated in Proposi-
tion 2. For example, the space SN, the Cech-Stone compactification of
the countable discrete space N, has this property.

For any set I we denote by I*(I) the K-space of all bounded funections
on I. For ¢ €I let ¢; be the characteristic functions of the one-point set
{1}, i.e., ¢;(j) = 6;; (j € I), and let 1 be the constant function on I which
takes on I the value 1. We denote by I’ (I) the vector subspace of 1°(I)
which is generated by the set {e;:¢ e I}U{l}. It is obvious that I3 (I)
is the sublattice of I (I) consisting of all functions on I which are constants
outside of finite subsets of I.

THEOREM. Let F be a vector lattice. Then the following conditions are
equivalent:

(1) F is a K-space;

(2) for every vector lattice E the equality L™(E, F) = L°(E, F) holds
and L' (E, F) is a K-space;

(8) for every vector lattice E the equality L'(E,F) = L*E, F) holds
and L' (E, F) is a vector lattice;

(4) for every set I the space L'(I3(I), F) is a vector lattice.

Proof. We must prove only the implication (4) = (1) because the
implications (2) = (3) = (4) are obvious and the implication (1) = (2)
is again the Kantorovich theorem.
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First we shall prove that F is Dedekind ¢-complete. Let (y,) be an
increasing sequence in F__ such that y, <y for some y e F,_ . We set E
= I(N) and define an operator T : E — F by putting T1 = 0, Te, = v,,
and Te, =y, —¥,_, (n = 2). Let T, be another operator from E into F such
that T,1 =y and T,e, = Te, (n >1). It is clear that T, >0 and T,>T,
so T e L' (E, F). Since L' (E, F) is a vector lattice, there exists an operator
T, el (E, F). We show that

T.1 =supy,.
n

Indeed, for every n =1,2,... we have
T1>T (es+ ... +e,)=>T(ey+ ... +e€,) =Y,.

Thus T,1 is an upper bound of (y,).

Conversely, let ¥ be some upper bound of (y,). We define an operator
T:E —»F by putting 71 =4 and Te, = Te, (n>1). Then T >0 and
T>T, thus T> T, . Consequently, ¥ = T1L>T,1, i.e,, T, 1 is the least
upper bound of (y,), and hence F is Dedekind o-complete.

Now the conclusion that F is a K-space will follow if we show that
F is conditionally laterally complete, i.e., every order bounded family
(Y:)ier of pairwise disjoint elements in F'_ has the least upper bound in
F (see [2], Theorem 4). We put E = I7°(I) and define an operator 7' : E — F
by setting T1 = 0 and Te; = y; (¢ € I). In the same way as above we can
show that T € L"(E, F) and T,1 = sup{y; : ¢ € I}. The proof is completed.

Remark. We cannot replace (3) in the Theorem by the following
condition:

There exists a (fixed) infinite-dimensional vector lattice £ such that
L™ (E, F) is a vector lattice.

Indeed, the first-named author showed that the space L"(l,, F)
is a vector lattice for every Banach lattice . The vector lattice F built
in Proposition 2 is obviously a Banach lattice.
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