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Introduction. An operator-stable probability measure in a real separable
Banach space X is a limit law arising, roughly speaking, from affine
modification of the partial sums of a sequence of independent identically
distributed X-valued random variables. We show that a probability
measure y is operator-stable if and only if, for each ¢ > 0, 4’ is a transla-
tion of the measure ¢'°¢*?4 for any linear continuous operator B on X.
Further, we get a representation of the characteristic functionals of these
limit laws.

1. Notation and preliminaries. Let X denote a real separable Banach
space with the norm |-| and with the dual space X*. By (-, -> we shall
denote the dual pairing between X and X*. Further, B(X) will denote
the algebra of continuous, linear operators on X with the norm topology.
Given a subset F' of B(X), by Sem (F) we shall denote the closed multi-
plicative semigroup of operators spanned by F. The unit and the zero
operators will be denoted by I and 0, respectively. A sequence {u,} of
probability measures on X is said to converge to a probability measure p on
X if, for every bounded continuous real-valued function f on X,

[ fau, [ fau.

The characteristic functional of x is defined on X* by the formula

-

uly) = fe"“'”)y(dw), where y € X*.
X

For an operator A from B(X) and a probability measure u on X
let Ay denote the probability measure defined by the formula Au(FE)
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= u{ A~'(E)) for all Borel subsets E of X. It is easy to check the equations

Aux») =Ap+ Ay and  Ap(y) = i(4%Y),

where 4* denotes the adjoint operator.

Moreover, A, u, - Au whenever A, - A and u, — u. Given a prob-
ability measure u on X, we define 4 by putting u(E) = u(—E), where
—F = {—ux: ¢ € B}. For any probability measure x on X the measure
|u|* = u * p is called the symmetrization of u. A probability measure u
is said to be full if its support is not contained in any preper hyperplane
of X. Moreover, by 4, (x € X) we denote the probability measure concen-
trated at the point 2.

A probability measure u on X is said to be infinitely divisible when-
ever for every positive integer n there exists a probability measure u,
such that 4 = u.", where the power is taken in the sense of convolution.
For the theory of infinitely divisible probability measures on Banach
spaces and on even more general algebraic structures, we refer the reader
to [15], [16] and [3]. In particular, if F' is any bounded non-negative
Borel measure, then e(F) associated with F is defined by

e(F) = e~ F(@) 2 _1_ F*k’
=, k!

where F*° = §,. The measure F is called a Poisson exponent of e(F).
Let M be a not necessarily bounded Borel measure on X vanishing at
{0}. If there exists a representation M = sup¥,, where the F,’s are bound-
ed and the sequence {e(F,)} of associated Poisson measures is shift com-
pact, then each cluster point of the sequence {¢(F,) * 9, } (v, € X) is
called a generalized Poisson measure and denoted by &(M). Clearly, e(M)
is uniquely determined up to translation, i.e., for two cluster points, say
p and p, of {e(F,)xd,} and {e(¥,)=* 4, }, respectively, we have pu,
= u, * 0, for certain # € X ([15], p. 313). Further, the measure M is
called a generalized Poisson exponent of e(M). Let M (X) denote the set
of all generalized Poisson exponents of X.

By a Gaussian measure on X we mean such a probability measure
o on X that for every y € X* the induced measure yo on the real line
is Gaussian. Gaussian measures on Banach spaces have been studied
by Fernique in [4], Kuelbs in [8], and Vakhania in [18]. In this paper we
consider only symmetric Gaussian measures. For such measures the char-
acteristic funectional is of the form

o(y) = exp[—¥<y, Ryd] (yeX¥),

where R is the covarianee operator, i.e., a compact operator from x*
into X with the properties: (¥, Ry,> = <y5, Ry,> for all y,,y,e X"
(symmetry) and <y, Ry)> > 0 (non-negativity) ([18], p. 136, [2]). By
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R(X) we shall denote the set of all covariance operators of Gaussian
measures on X. Clearly, if R is the covariance operator of ¢ and 4 € B(X),
then ARA* is the covariance operator of Ap.

Tortrat proved in [15], p. 311 (see also [2]), the following a,nalogue
of the Lévy-Khinchine representation of infinitely divisible laws.

PROPOSITION 1.1. A probability measure p on X 18 infinitely divisible
if and only if -
(1.1) p=o*e(M),

where o 18 a symmeltric Gaussian measure and M € M(X). Moreover, de-
composition (1.1) i8 unique.

Let u be an infinitely divisible probability measure on X. Then for
every c¢ > 0 there exists an infinitely divisible probability measure » on
X such that »(y) = [1(y)]°. We denote » by u°. The set {u},-, is an abe-
lian semigroup with the convolution as a semigroup operation, and the
mapping ¢ — u° is a homomorphism of the additive semigroup of non-
negative real numbers onto {u°},-,. Moreover, the mapping ¢ — u° is con-
tinuous. Namely, we prove the following

PROPOSITION 1.2. Let u be an infinitely divisible probability measure
on X and let {c,} be a sequence of non-negative real numbers converging
to cy. Then u’nr converges to u.

Proof. Let u = o * ¢(M), where g is a symmetric Gaussian measure
and M € M(X). Hence u» = o°» x ¢(M)°. Since the sequence {¢,} is bound-
ed, the sequence {u°r} is shift compact (Theorem 3.2.2 of [12]). Further,
the sequence {¢°*} is conditionally compact and {e(M)°} is shift compact.
Thus ¢° converges to ¢®. Without loss of generality we may assume that
¢o =0. Let v = ¢(M) and », = é(M)™. We now show that the sequence
v, converges to J,. By Lemma 1.2.4 from [3], this is equivalent to

lim sup|»,(y)—1] =0 or lim sup |log¥,(y)| = 0

n—00 VGU?. n—00 IIGU?,

for all r>0 where U, = {meX- llz]l < r} and
={yeX*: Kz,y>| <1 for all z € U,}.

There ex1sts a 6 > 0 such that |{—sint| < 1—cost for |{| < 6. From
the Dettweiler representation of the characteristic functionals of infin-
itely divisible measures on X (Theorem 1.2.5 of [3]) we get the formula

»(y) =expli<a, >+ [V —1—ice, Y1y, (@)] ¥ ()},
X .
where a € X and 1y, denotes the indicator of U, . Hence
r

log»,(y) =i<0,6, y>+ [[=V —1—ilw, Y1y, (2)] 0, M(da).
X r
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If y € U), then [z, y>| < ¢ for all z € U, . Further, we get

log#, ()| < Ke,+¢, [ 6V —1—ilw, y>|M (dw)
U,,r

< Ke,+o¢, [(1—cos(z,y>)2M (dz) = Ko,+log 5, ().
X

Let ¢ > 0. Then there exists an n, such that Kec¢, < ¢/2 for n > n,.
Since |6(M)™|* converges to 8,, we now conclude by Lemma 1.2.3 of
[3] that there exists an n such that

sup log|v, (¥)> < for all n > n,.

&
vt 2

Let n, = max(ny, n,). We have

sup|logv,(y)| <& for all n> n,.
veU?

This completes the proof of Proposition 1.2.
The following lemma will be used repeatedly in the sequel.
LemmA 1.1. Let u,v,y, (n =1,2,...) be probability measures on
X such that
lirgic(y)iln(y) =»(y) for all yeX*.

n—

Assume that »(y) %« 0 for all y € X*. Then there exists a unique prob-
ability measure y on X such that
(1.2) Hxy =,

Proof. Let f(y) = »(y)/1(y) for all y € X*. The function f is contin-
uous. Let N be a collection of finite codimension and closed subspaces
of X and let py: X — X /N (N € N) be canonical maps. For all N € N we
have

lim pyy,(¥) = floN(¥), ve (X/N).

n—o00

Thus there exists a unique probability measure y5 on X /N such that
the sequence {pyy,} converges to yy and y, = fpy. Further, we have

(1.3) PN(/‘) *yy = Py(¥).

The system of measure {yy}yen iS @ cylindrical measure. By (1.3)
and Lemma 1.1.7 of [3] there exists a probability measure y on X such
that (1.2) holds, which completes the proof.

2. Statement of the problem. In terms of random variables, the prob-
lem we study is enunciated as follows:
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Suppose that {£,} is a sequence of independent identically distributed
X-valued random variables and assume that {4,} and {z,} are sequences
from B(X) and X, respectively, such that

() 4, are invertible,
(%*) Sem({4,,4;': n =1,2,...,m;m =1,2,...}) =& is com-
pact (in the norm topology of B(X)),
(x+*) the distribution of

An Zn’ Ej+mn
j=1

converges to a probability measure u.

What can be said about the limit measure u?

In the one-dimensional case this problem has been solved by P. Lévy:
the class of all limit measures in question coincides with the class of all
stable probability measures (see [11], p. 326). Therefore, the limit measures
u will be called operator-stable measures. Evidently, operator-stable meas-
ures are Lévy’s measures (see [17]). This paper, stimulated by results
of Urbanik [17], is an outgrowth of Sharpe’s work [14] concerning opera-
tor-stable measures on finite-dimensional spaces. All that has been done
so far for Banach spaces describes the limit measures when all operators
A, are multiples of the unit operator. In this case, Kumar and Mandrekar
proved in [10] an analogue of the Lévy characterization theorem, and
Jurek and Urbanik obtained in [7] a representation of the characteristic
functional.

We note that for full operator-stable measures on finite-dimensional
spaces the compactness condition (x*) can be omitted. The same is true

for non-degenerate measures on a Banach space when A, are multiples
of I.

3. Characterization of full operator-stable measures. We say that
a sequence {4,} of operators from B(X) with properties (*) and (*=*) is
a norming sequence corresponding to an operator-stable measure u if
there exist a probability measure » on X and a sequence {a,} of elements
of X such that 4,»*"+4, converges to u.

LEMMA 3.1. Let u be a full operator-stable measure on X and let {A,}
be a morming sequence corresponding to u. Then for every c € (0,1) there
exist B,e ¥ and a,e€ X such that

(3.1) p=Buxd,.

Proof. Let ¢ € (0, 1) and let {n,} be a sequence of positive integers

such that ‘
lim —

k—>oo nk+l

=c’
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We have
Ay, VT dank+l-> p a8 k— oo.
Hence
[5(45,,,9)1*"" exp[i<a,, , 991> i(y) for all y e X"
Let
My . -1 )
bk_ a"k+l Ank+lAnk (a'nk) .

L
Further, the sequence
l[;’(A;k (Ank+ 1 A;]: )* (y))]nk exp [i <Ank+ 1 A;]: (ank) ’ y>] exp [i <bk ) y>]}

converges to [u(y)]° for all y € X*. Since the sequence {4, +1A;,:} is con-
ditionally compact, we may assume without loss of generality that

(3.2) 4, Ayl> B,
By (3.2) we have
(4,,, A7) (A, 7" % 8, ) > B,p.

Clearly,
(uBgy)exp [i<by, y>1 —~[n(y)) for all y e X*.

By Lemma 1.2, (3.1) holds. This completes the proof of the lemma.

LeEMMA 3.2. Let u be a full operator-stable measure on X and let {A,}
be a norming sequence corresponding to u. Then there exist sequences {B,}
and {c,} of elements of & and of elements of (0, 1), respectively, such that
B, ~>1, ¢, >1 and

(3.3) u'n =B,,y*6bn (n =1,2,...),
where b, € X.

Proof. Let {¢,} be any sequence of elements of (0, 1) such that ¢, — 1.
By Lemma 3.1, there exists a sequence {C,}, C, € &, such that u’» =
C,uxd, (a,eX) for all n. Since {C,} is conditionally compact,
we may assume without loss of generality that C, -~ C. We have u’r — u
(Proposition 1.1) and C,u — Cu, whence, by Lemma 1.1, u = Bu * §,
for certain b € X. Further, by Lemma 3.2 of [17], the operator B is inver-
tible. Let B, = 0,C~'. Now we have (3.3), which completes the proof
of the lemma.

Now, we are ready to prove a characterization theorem for a full
operator-stable measure on X.

THEOREM 3.1. A full probability measure u on a real separable Banach
space X i8 an operator-stable measure if and only if there is an operator
B € B(X) with ‘

limexp[logiB] = 0

-0
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such that
(3.4) p' = exp[logtBlu * 8,,, >0,
where b, € X.

Proof. Necessity. Suppose that u is an operator-stable measure
and {4,} is a norming sequence corresponding to x. By Lemma 3.2 there
exist sequences {B,} and {c,} of operators of & and of real numbers
of (0,1), respectively, such that B, —1I,¢, >1 and u* =B, p=* 4,
(b,eX) for n =1,2,... ‘

Let W be the set of all rational numbers of (0,1) and let we W.
Then there exists a sequence {kl'} of positive integers such that

Gz".l <w < 0;
and
(3.5) lime¢l = w,

n—o0o
where 2z stands for %, .
Further, we get
2
pm=Biu 0,,
for certain a, € X and n =1, 2, ... Since, by Proposition 1.1 and (3.5),

2

,uc" — u” and the sequence {B:} is conditionally compact, we have

B = Quu * 6bw
for certain b,e X and w e W.
The set {@,,},ew i8 conditionally compact and

lim@,, = 0.
w0
We may assume without loss of generality that

Qw,sz = sz Qw17 Wyy Wy € W’
and

(3.6) Qu, Qu, = Quoyuo, -

Now we prove that operators from {@Q,}..» are invertible.

By (3.6) it is enough to show that there exists an ¢ (0 < ¢ < 1) such
that the operators @, (1—& < w < 1) are invertible. Suppose that {w,}
and {Q,, } are sequences of rational numbers of (0,1) and of operators
of {Q,}wew, respectively, such that w, —1, Q., are non-invertible and
un = Wy, u * 6, for certain b, e X. We may assume without loss of
generality that ¢,, — @. By Lemma 3.2 of [17] the operator @ is invertible,
which is a contradiction since the set of invertible operators is open in the

norm topology of B(X).
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The set {Q,}wewV L}V {Qs }war 18 a group. Let H be its closure
in the norm topology of B(X). We write

G, ={AeB(X): y» =Au*d,,ae X}nH, 0<p< oo,

Clearly,
(3.7) G,NG, =0 if pH#q
and

H= |J G,u{0}.
0<p<oo

G, is an abelian compact group. Let F be a set containing all cluster

points of {Q,},,cw- Then the set FNG, is an abelian compact group (Lem-

ma 3.2 of [17]) and G, = G, F.

Operators from | ) @, areinvertible. Clearly, there exists an s € (0, 1)
<p<oo

such that the operators from () @,areinvertible. Let0 <p <sand 4 €@G,.

s<p<l
Then there exist sequences {w,} and {@,, } of rational numbers of (0, 1)

and of operators of {Q,}..», respectively, such that

limw, =p and lim@Q, =A4.

n—>00

Let v = 3(1+s8) and v, = w,vp~'. We may assume without loss of
generality that v, <1 for » =1,2,... We have

Qw”Qv ;l = anvQ;l = Qw ”p_lQp ;l = Qvn

and @, converges to A4Q,Q;’. Since 49,9, € @,, 4Q,Q," is invertible,
and so is A. Thus operators from | @, are invertible.
Further, we get o<p<l

G, =@y, for pe(0, )

and
(3.8) ¢,G, =4, for p,qe(0, o).
Clearly, for any 0 <7< g < oo the set | J @,is compact.
Let r<p<q
= U G,
0<p<oo

Then G is a locally compact, compactly generated, abelian group.
G, is a compact maximal subgroup of G.

Let f be a function of G into the positive real numbers such that
f(@) =p if @ €G,. By (3.7) the mapping f is well defined. In view of
(3.8), f is a continuous homomorphism. The openness of f is now a conse-
quence of its continuity and of the o-compactness of G (Theorem 5.29
of [5]). @, is the kernel of f.
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The mapping logf: G — R is a continuous open homomorphism
of G onto the additive group R. The kernel of logf is G,. By Theorem 5.27
of [5], G/G, is isomorphic to E. From the Pontrjagin theorem ([19], § 29)
we infer that @ is isomorphic to the direct sum of R and G,. Let g: R x@Q,
— @ be such an isomorphism and let W, = g({t, I>). It is clear that
{W }ieg is a continuous one-parameter group of operators from @ satisfying
the condition
limW, =1.
10
By Theorem 8.4.2 of [6], it can be represented in the exponential
form W, = exp[tB], where B € B(X). Moreover, W, ¢ G for t +# 0.
The mapping ¢ — exp[tB] is a continuous homomorphism of the
additive group R into @, so

t — exp[tB] — logf(exp[tB])

is a continuous homomorphism of the additive group R onto R such that
logf(exp[tB]) = Kt for some constant K € R. Replacing B by K !B,
we may assume that logf(exp[tB]) ={, giving

flexp[tB]) = exp[t] or f(exp[logiB]) =t.
Thus exp[logiB] € G, for every ¢ > 0.

Sufficiency. Assuming that there exists an operator B e B(X)
with properties as in Theorem 3.1 and taking A, = exp[logn~'B], we
obtain

u = An.u‘n * 6nb1/n
and
& = {exp[logtB]: 0 < t<1}u{0}.

Thus the theorem is proved.

Remark 3.1. We shall denote exp[logtB] by ¢Z.

COROLLARY 3.1. A full probability measure on a real separable Banach
space X 18 operator-stable if and only if there exists a sequence {A,} of in-
vertible operators of B(X) such that & 18 compact in the norm topology of
B(X) and

,u=An,u*”*6an (n=1,2,...)
Jor some a, € X.

Remark 3.2. Let G be a group of invertible operators of B(X).
A probability measure x4 on X is called stable under @ if for any A, B € G
there exist C € 4 and z € X such that

Ap* By =Cu * 6.

Let

A eB(X) with lim exp[td] = 0.
>—00
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A full probability measure u is stable under {exp[t4]},.5 if and only
if 4 is an operator-stable measure and u’ = t"u * 8, where ¢ > 0,5, e X
and B = cA for some ¢ > 0 (see [13]).

4. Representation of operator-stable measures. Our next aim is to
give a representation of the characteristic functionals of operator-stable
measures on X.

THEOREM 4.1. Let
BeB(X) with limt® = 0.
)

Then a full probability measure p is operator-stable with u* = t®u * ¢,
for all t> 0 and for some b, € X if and only if u = g » é(M), where g is
a symmetric Gaussian measure with the covariance operator R and M € M (X)
such that R = BR+ RB* and t°M = tM for all t > 0.

Proof. Necessity. Suppose that x is operator-stable and has the
properties as in the theorem. Since u is infinitely divisible, 4 = g * (M),
where ¢ is a symmetric Gaussian measure with the covariance operator
R and M € M (X). Moreover, for all { > 0 we have

M =tM, TR =tBRi5".
By a simple calculation we get the formulas
— tB))R tB* .
i B (XPUBDE(exp[B™) _ _ pp . ppe,

-0 t

and

1— ¢
lim 6
t->0
which implies the equation B = BR+ RB*.
Sufficiency. Let us assume that M € M (X), t*M = tM, R € R(X),
and R = BR-+ RB*. Clearly,

é(M) = tP%¢(M).

R = —R,

Let A(t) = ¢ R— (exp[tB])R(exp[tB*]) for all ¢ > 0. Clearly, for all
t>0

lim A(t+h)—A(1)

t—0 h

— A(t).
Given y,,y, € X%, we put f, ,.(¢) = <{y;, 4(t)y>. Further, we get

d
fyl,uz(o) = 07 'Et"fyl,yz(t) =fy1,y2(t)°
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Evidently, for all y,, ¥, € X* and t € R we have

Y1, A(t)ys> = 0.

Thus 4 (t) = 0, which completes the proof.
COROLLARY 4.1. Let

BeB(X) with limt® =0
-0

and let u be a full operator-stable measure on X with u* = t%u » 8, for all
t > 0 and for some b, e X. If u = g » (M), where g is a symmetric Gaussian
measure and M € M(X), then g and M are concenirated on subspaces X,
and X,, respectively, which are invariant under B and X = X, +X,.

Let B € B(X) with limt® = 0. Given a subset F of X, we put

t—0

7(B) = {tBx: 2 e B, 0 <1< oo}.

It is clear that for any compact set E with the property 0 ¢ F and
for any pair r,, 7, (r, > 7,) of positive numbers the inequality

n<lizzl<r, (2,€E)

implies the existence of certain pair ¢, ¢, (¢, < ¢;) of positive numbers
such that ¢, <?, <c,forn =1, 2, ... This simple fact yields the following

LeEMMA 4.1. Let E be a compact subset of X and let 0 ¢ E. Then for
every pair 1y, 1y (ry < 73) of positive numbers the set {x: r, < ||| < r}nt(E)
18 compact.

The following lemma reduces our problem of examining measures
M e M(X) with the property t?M = tM (¢ > 0) to the case of measures
concentrated on t(F), where F is compact and 0 ¢ E.

LEMMA 4.2. Let M € M(X) and tM = tEM for all t > 0. Then there
exists a decomposition

u - 2 o,
n=1

where M, € M(X), tM, = t®M, for all t> 0, M, are concentrated on dis-
joint sets (E,), 0 ¢ E,, and E, are compact.

The proof of the lemma is immediate by Lemma 5.4 of [17].

Now, we are ready to prove the representation of the characteristic
functionals of full operator-stable measures.

THEOREM 4.2. A full probability measure u on X 18 an operator-stable
measure if and only if there exist an operator B € B(X) with limt? = 0,

10
an element a € X, an operator R € R(X) such that R = BR+RB*, and
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a finite measure y on the unit sphere S of X such that
(41)  p(y) = exp|ida, > —4<y, Ryd+
+ [ [ [expli<t®e, y>] —1—itPz, y>1p(Pa)|t 2ty (da) },
8 0

where 1, denotes the indicator of the unit ball D in X and y € X*.

Proof. We use arguments similar to those given by Kuelbs in [9].
Let u be a full operator-stable measure on X. Hence x is infinitely divisible
and u = o * é(M), where ¢ is a symmetric Gaussian measure with the
covariance operator B and M € M(X). Moreover, for all t > 0 we have

t*?M =tM, R = BR+RB*.
Let M be a decomposition as in Lemma 4.2 and let
D, = ©(B,)n{=z: liz| = 1}.

By Lemma 4.1 the set D, is compact. We define an equivalence rela-
tion in D, as follows:

%, ~ Ty, T,,%, €D,, if and only if there exists a ¢ > 0 such that
x, = t8x,.

In order to prove the continuity of this equivalence relation suppose
that @, ~ x, and that the sequences {z,} ahd {z}} converge to z and a7,
respectively. Then for some real positive numbers ¢, we have t3z, = z}.
From the compactness of E, and the assumption 0 ¢ E, we infer that
there exists a certain pair ¢, ¢, (¢; < ¢,) of positive numbers such that
6 <t,<¢c, for n =1,2,... Clearly, for any cluster point ¢, of {{,} we
have t3x ~ 1, which implies « ~ 2. Thus the relation ~ is continuous.
Hence it follows that the quotient space D,/~ is compact ([1], p. 97).
The coset containing x will be denoted by [z]. Further, the mapping
z — [«#] from D, onto D,/~ is continuous. A theorem of Kuratowski
(Theorem 1.4.2 of [12]) shows that there exists a Borel subset 8, of D,
such that 8, intersects each [2] at exactly one point.

Let f, be a mapping of S, x(0,0) into z(E,) such that f, (z, t) = tZz.
The mapping f, is continuous and one-to-one. By another theorem of
Kuratowski (Corollary 1.3.3 of [12]), the mapping f;' is measurable.
Let

7: U 8,x(0, ) > w(B,)

be such that f(x,?) =f,(#,t) if #€8,. Then f is one-to-one and the
mappings f and f~! are measurable. Hence the o-field generated by the
collection of the sets {tPz: € I, x € F}, where I and F are closed inter-
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oo
vals on the half line (0, o) and on the Borel set of 8, = | 8,,, respectively,

n=1

consists of all Borel subsets of | J v(E,).
n=1

Put
g(r,F) = M({tPz: t>r,zeF}), r>0.

Since tM = t®M for all ¢t > 0, we haye
r
g(—;, F) =gsg(r,F), r,8>0.

Now, setting » = ¢ and yo(¥#) = g(1, F) we get g(s, F) = s 'y (F),
which implies the formula

(4.2) M({Pz: tel,xeF}) =y, (F) [t72at.
’ I

Since there exists an r > 0 such that ||t®?z||>r forall¢>1 and x € §,,
the measure y, is finite.
Formula (4.2) can be extended for all Borel subsets of X\ {0} as

(4.3) M(F) = [ [ 1p(tPx)t" dty(dw),

S o
where y (@) = y,(GnS,) for any Borel subset G of S. Further, from the
Dettweiler representation of the characteristic functionals of an infinitely
divisible measure on X (Theorem 1.2.5 of [3]) we get the formula

(4.4)  a(y) = exp{i<a, v>—4<y, Ry +
+ [ [P -1 —idz, y>1p(2) 1M (do) },
X

where y €e X*,a € X, Re R(X), M € M(X), and 1,, denotes the indicator
of the unit ball D in X. Setting the expression (4.3) for M into (4.4) we
get the required representation (4.1), which completes the proof of the
necessity.

By a simple calculation one can check that each measure u with the
characteristic functional of form (4.1) satisfies equation (3.4) for all ¢t > 0.
Hence, by Theorem 3.1, we get the proof of the theorem.
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