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0. Introduction. Consider a manifold M with an embedded hyper-
surface N. We obtain a family of Riemannian manifolds by shrinking N
to a point, in such a way that the limiting manifold has a conic singularity
with two copies of N as cross section. In this situation one can ask: What
happens to the basic geometric operators in this limit? The case of d on a
Riemann surface was treated in [SS]. Here, we consider the Dirac operator;
a closely related paper [S] treats the Gauss—Bonnet operator.

The “shrinking” process is the following. Take a fixed metric g on N,
and let z, |z| < i, be a coordinate transversal to N. We define a family of
metrics g; on M, depending on the parameter ¢, by

(0.1) g: =dz’ +(z? +¢%)g, |z|< 1.

For |z| > 1, the metric is extended in some convenient way. In the limit as
t — 0, this is a conic metric; the cross section of the cone is two copies of N.
Denote by D; the full, selfadjoint Dirac operator on M, with the metric g;;
by Dmax the maximal realization of the Dirac operator on the conic limiting
manifold; and by D the Dirac operator on N. As shown in [C], and at
the end of Sec. 1 below, each eigenvalue p of D with |u| < 1/2 contributes
sections in the domain of D,y Wwith singularities like |z|~(*/2)%#  which
are therefore in L2. When such sections are present, D is not essentially
selfadjoint, and there are various possible closed realizations (see [C] and
[BS]). Our limit picks out a particular one.

THEOREM 1. The graph of D; has a limit as t — 0, which is the graph
of a selfadjoint Dirac operator Dy on the conic limiting manifold. The
domain of Dy consists of the sections in the domain of Dyayx which satisfy
the condition

(0.2) lim |z|*2s(z) = lim |z|*/2s(z).
z—0+ z—0-

The limits in (0.2) are taken in L*(N). The existence of these limits
means that the singularities |z|~(*/2)-I4| are required to vanish for pu # 0;
sections where the limits in (0.2) are finite and nonzero arise only from
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the harmonic spinors on N, with eigenvalue 4 = 0. Thus, when no such
harmonic spinors exist, the link between the two sides of N dissolves com-
pletely; in the limit, there is no condition relating the sections on one side
of N to sections on the other side.

When N is the standard unit sphere, then the limiting metric go is the
standard metric on the unit ball; so functions in the maximal domain are in
the Sobolev space H!, ruling out any singularities |z|~(*/?)%lul for |u| < 1/2.
This gives a peculiar proof that the Dirac operator on the standard unit
sphere has no eigenvalue with || < 1/2. (In the case of S!, we have to
specify the spin structure; it is the nontrivial one arising by considering S
as the boundary of the unit 2-disk.)

Now suppose that dim(M) is even, and let D denote the Dirac operator
D; restricted to the “+ spinors”. The index of D} is the A genus of M.
Now each eigenvalue of D with |u| < 1/2 contributes on each side of N just
one section in the domain of Dyay, With singularity z—(*/2)*+# a5 ¢ — 0+
and |z|~(*/2)=# as £ — 0~ (see end of Sec. 1).

THEOREM 2. The graph of D} has a limit as t — 0, which is the graph
of a Dirac operator D§ on the conic limiting manifold. The domain of D¢
is again determined by the condition (0.2).

Since graph continuity preserves the index (see [SS}]), we obtain:
COROLLARY 1. The limiting operator Df has indez ind(D§) = A(M).

Suppose now that N separates M into two disjoint parts My and M_.
Then we obtain two disjoint Riemannian manifolds M, and M _, each with
a conic singularity with cross section N. On each of these, we can con-
sider Dirac operators with appropriate domains. Denote by DB;,(Hi) the
restriction of D}, (M) to sections with

|z[*?s(z) = o(1),

and by D{_ (M) the restriction to sections with o(1) replaced by O(1).
The distinction between these two realizations lies in the treatment of the
harmonic spinors, which give rise to sections where the limits in (0.2) are
finite and nonzero; the Dirichlet domain requires these limits to vanish,
while the Neumann domain leaves them free. Denote the indices of these
realizations by Ap;;(M+) and Aneu(M+). Then Theorem 2 yields:

COROLLARY 2. In the above situation
A(M) = Api(M4) + Anea(M-) = Apie(M+) + Apie(M-) + v(D)
where v(D) is the nullity of the Dirac operator on N.

The outline of the paper is as follows. Section 1 reviews the separation
of variables formula for the Dirac operator given by Chou [C]. Section 2
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constructs a family of parametrices for D; near the hypersurface N, and
studies their limit as ¢ — 0. Section 3 reviews the argument for graph
continuity from [SS], thus proving Theorems 1 and 2. In the process, we
include a part of the argument that was regrettably omitted from [SS].

The author thanks Haynes Miller and I. M. Singer for helpful comments
about A(M) and the Dirac operator, and J. Bruening for a careful reading
of an earlier draft.

1. The representations of D and D+ using eigenvectors of D.
This section is essentially a review of part of [C].

A metric g on M gives an inner product on 7'(M), and thus determines a
Clifford bundle on M, a vector bundle whose fibre at any point p is the tensor
algebra generated by the tangent vectors, reduced modulo the relations

(1.1) /92, ® 8/dzy + 8]0z, ® /D2y = —2(/dz1,0/0z2), .

We denote by a - the multiplication in this Clifford bundle. If M is a spin
manifold, it carries a spin bundle S on which the Clifford bundle acts. The
metric g defines a connection on S. The Dirac operator is then expressed,
using an orthonormal frame {e;} for T'(M), as

(1.2) D=) e;-V,,.

With our local representation near N, we can choose an orthonormal frame
{e1,...,€,} for N, and supplement it with ey = 8/0z.

When dim(M) = n + 1 is even, then S is a direct sum of subbundles §*
determined by the action of the volume element

0
. 1)/2
wn+l=1(n+)/£-wn, Wp =€1°...°€x.

Since wp41 - Wne1 = 1, subbundles S* of § can be (and are) defined by

Wnetl * st =45t for any section s* in S%.
This gives a restriction of D,
Dt . C®(8%) = C®(57).
The restriction S+|n determines a spin bundle S(N) on N, and as in [C],
we denote by D the Dirac operator on this S(N). D is selfadjoint elliptic, so
has an orthonormal basis of eigenfunctions ¢; with eigenvalues u;. Denote
by p; the parallel translation of ¢; along the curves with tangents 3/dz.
Consider a metric of the form

(1.3) dz? + h(z)*g

where g is the metric on N, and h(z) a warping factor; in (0.1), h(z) =
(z? + t2)1/2. According to [C, Prop. (2.5)], if D = pep, B is the parallel
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translation of ¢, and f and g are functions of z alone, then

0 _\ _ (4, 0k e o0 _ [p ,nh’)_
where n = dim(N). Moreover, the norm of any section f@ + ¢gd/9z - @
supported in {|z| < 1} is

1
lel> [ (1£1? + lgl*)h" dz .
-1

So if we introduce a normalizing factor A~"/ and represent a section as
- _ o _

(1.4) s=) h"/? (fj¢j+yj;9;'¢j)

then

—n _ _ _ 8 _
Ds=} h~"/ [(h "uifi = 93)%i + (f; — k7 pigi) 5 -so,-] -

This gives the desired representation of D near the hypersurface N; it is the
direct sum of operators of the form

0 —119 1fu 0
(1.5) [1 O]az+h[0 -#j]
_ {0 -1 ._a_. + 10 —p
110 Or h|-p; O
acting on pairs [g] with norm [*,(|f(2)® + lg(z)*)dz. The pair [g;;]
represents h="/2(f;%; + 9;0/0z - B;), and Dy, = p;op;.

To represent Dt : C®°(S§t) — C*=(S~), we use the convenient fact that

_, 0 _ _ 0 _
wu+1-(¢i5£-so)=iw+a—z'¢-

Thus S is spanned by sections { fi(z)(®; £0/0z - §;)}, and D* is a direct
sum of operators (1.5) acting on pairs [;] , which is equivalent to d/0z —
h~lp; acting on f.

In the limiting case, where h(z) = |z|, the analysis in [BS] shows that
each eigenvalue u; in (—1/2,1/2) contributes a function f; with a singularity
z# as z — 0%, and |z|~# as z — 07, yielding a section s; in the maximal
domain of Dt with singularity z=("/2+#; as z — 0t and |z|~("/2)~#i as
z — 07. For the full Dirac operator in (1.5), the eigenvalues are +p;, so
there is a section on each side of N with singularity |z|~(7/2)%s;
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2. A parametrix for D; near N. To construct a parametrix for
the full Dirac operator D;, we cancel the matrix [° "1] in (1.5), introduce

0

- 0 ] and thus obtain operators of the

eigenvectors [ :I:l] for the matrix [
form

9 _ .
(2.1) 32 Thm

So consider the equation
(22) w'(2) - phe(z) u(z) = f(z)
with f and u in L2, and h(z) = (22 + t?)1/2. The solution is

(23) @) =(+h@)| [ @+h() () dy+]

where the questionable limit of integration is to be determined by our desire
for a limit as ¢ — 0. Note that z+h.(z) is a positive and increasing function
for real z. Thus in (2.3) we would like z < y when p > 0, and y < z when
p# < 0. So we define a parametrix for (2.2) on the interval (-1,1) by

(z + he(2))* [ (y + he(9))™#f(y)dy  ifu >0,
(z + he(2)) JZ,(y + he(y))# f(y)dy if p <0
We will show that this has a limit as ¢t — 0. For the case x4 > 0 the limit is

[ (z/y)*f(y)dy, z>0,
Jo lv/zI*f(y)dy, =<0,

For p < 0 the lower limits are 0 for z > 0 and -1 for z < 0; for u = 0,
we have merely Qo f(z) = ffl f(y)dy. (With g = 0, we could just as well
integrate from 1 as from —1.)

(2.4) Q:f(z) = {

p>0.

(2.5) Qof(z) = {

LEMMA 1. Fort < 1,

(2.6) 1Q:ll < C(1+ |u])?,
(2.7) 1Q: — Qoll < C(1+ |u])~'(t + t*)log(1 + 1/1),

with C independent of p and t.

Proof of (2.6). The case u = 0 is clear, since then Q, is independent
of ¢; and the operator Q. for 4 < 0 is minus the adjoint of the one for —y;
so it suffices to take p > 0. For this case, we split both domain and range
as the direct sum of L2(-1,0) and L2(0,1).

For 0 < z < y we have
.’D+ht($)< z+t
y+he(y) ~y+t’

(2.8)
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So the integral operator on L?(0,1) with kernel
(z+ he(2))"(y + he(y))™*, 0<z<y<l,

has norm bounded by

C

1 y
2.9) su + t)* +t)"*dy+sup(y+t)~# z4t)¢dr < ——
(29) swp(z+ )" [+ dytoupy+ ™ [(e40tde <

with C independent of 4 and ¢, 0 < t < 1. Likewise, the operator from
L%(0,1) to L%(—1,0) defined by

1
Kf(z)=(z+h()* [ (v+he(v)*f(¥)dy, -1<z<0,
0
has norm

0 1
(2100 Xl < [ [ (@ +hi(2)) dz [ (y+ he(y))~* dy]1/2
-1 5

1 1
=12 [(y+h(y)*dy <t [(y+1) "2 dy
0 0

__t |, (t)"‘“
T 2u-1 1+ '

(In the integral from —1 to 0, replace z by —y.) When g > 1 this is
< Ct/(1+ pu). When p < 1, the Mean Value Theorem applied to (IL_H)’
gives ||K|| < tlog(1 + 1/t). Thus,for 0 <t <1,

C

. < .
(2.11) K| < 1+”tlog(1+1/t)
This gives the desired estimate for Q; from L?(0,1) to L?(—1,1). The part
of Q. acting from L2(-1,0) to L%(0,1) is 0, and the part from L?(—-1,0) to
L%*(—1,0) is equivalent, by an obvious change of variable, to an operator on
L%(0,1) with kernel

(@t he(z)) (Y + he(y))”, 0<y<z<1.

This is the adjoint of the one estimated in (2.9), so has the same norm.

Proof of (2.7). As before, it suffices to take u > 0. In view of (2.11),
and the adjoint relation exploited at the end of the previous proof, it suffices
to consider the operator on L2(0,1) with kernel

EE0] L PR
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We must show that this operator satisfies the estimate (2.7). For brevity, we
drop the subscript t on h;. Using (2.8) again, it suffices to treat the kernel

z+t\* (z)”

k(z,y) = -\ , 0<z<y<l.
() (y + t) Y Y

By Schur’s Test, the norm of this operator is dominated by

sup fk(z,y) dy+sup fk(z y)dz
z<1 z y<

The second term is < t/(p + 1). The first is < t/(1 — u) for u > 1, and the

Mean Value Theorem shows that it is < t™in(#1)]og(1 + 1/t). This proves
(2.7), and with it Lemma 1.

3. The global parametrix, and graph continuity. This section is
essentially a review of the corresponding part of [SS], mutatis mutandis.

Since D; is selfadjoint, ¢ + D, is invertible. We construct the resolvent
(:+ D¢)™! and show that it converges in norm as t — 0, thus proving graph
continuity of the family D, at t = 0.

Let Q; be a parametrix for the Dirac operator D; on the part of M where
|z| > 1/2, the “interior” of M. Since the metric (0.1) varies with ¢, so will
Q; vary with ¢; but it is easy to guarantee that @}; varies smoothly in ¢, for
t > 0. Thus

(3.1) DQi=1+T;

where the kernel of T; is C*® on M x M x [0,1], and the kernel of Q; is
C> off the diagonal. The parametrices Q; in (2.4), acting in the various
eigenspaces, can be combined to give a parametrix for D; in {|z| < 1}; we
denote this, too, by Q.. Each operator in (2.4) is compact, and the direct
sum of these operators converges in norm, because of the factor (1 + u)~!
in (2.6), so the combined operator Q; is also compact. |

We now set

(3.2) Py = 0iQivi + Qe

where ¥; + Y. = 1, pithi = ¥i, ¥ = 9., while ¢; and 9; vanish for
|z] < 1/2, and ¢, and 1, are supported in {|z| < 1}. We have

where the compact remainder is
Rt th + ‘P:T d’t + ‘P.eo Qt'pt + (Pceo Qt"/)c
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with eg denoting Clifford multiplication by d/9dz. Since I + R; is Fredholm
with index zero, and ¢ + D; is invertible, it follows that P; is a Fredholm
operator, with index zero, from L?(S) to the domain of D;. Using the
representation (1.4), we can think of P; as acting in a fixed Hilbert space,
independent of ¢t. Define Dy to be the Dirac operator D in the conic limiting
metric go = dz? + 72§, with domain defined by

(3.4) 1i!51+ |z|*?s(z) = lirg_ |z|*/2s(x),

both limits existing (as in (0.2)). One checks that both P and Py map into
this domain; in eigenspaces with g # 0 both limits are 0, while in the 0
eigenspace they are equal. Moreover, (3.4) defines a selfadjoint realization
of D, and (3.3) holds true for t = 0.

Let Ng be the nullspace of Py, and k£ = dim(Ng). Since Py has index zero
as a map into Dom(Dyp), there is a k-dimensional subspace, V', of Dom(Ds),
which is linearly independent of Range(FP,). We will show in Lemma 3 below
that V can be taken as a subspace of

C2°(S) = sections of S vanishing in a neighborhood of N.

(This is the argument omitted from [SS].) Let V, map Ny isomorphically
onto V, and N3 to 0. Then P, + V, is an isomorphism of L%(S) onto
Dom(Dy), so

(4 De)(Pe+Vo)=I+R:i+ (i+ D)V

is invertible when ¢t = 0. Since Vp is in C°(S5), the right hand side varies
continuously with ¢, and

(3.5) (i+ Dy)™ = (P + Vo)(I + Re + (i + Dy)Vp) ™!

varies continuously with ¢, as ¢ — 0. This proves Theorem 1.

Now suppose that dim(M) is even, so there is a direct sum § = ST S,
with D; mapping C*®(S%) to C*®(S¥). Denote by D} the restriction of
D, to the sections of S*. We can represent the full Dirac operator D, as

+
[1;)_ %‘ ] , with D7 = (DF)*. Hence the continuity of (i + D;)~! implies
t

: -1
that of [_ ( élI);")* zl}j‘] , and hence the graph continuity of D} (see
[SS]). This proves Theorem 2, and with it Corollary 1.

Now consider the situation of Corollary 2 of Theorem 2, where N divides
M into two disjoint parts; denote the resulting conic limit manifolds by
M, and M_. Denote by (D) the nullity of the Dirac operator D on N.
Then the condltlon (3.4) defining the domain of the conic limiting operator

involves v(D) matching conditions. These can be replaced by an equal
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number of vanishing conditions, by requiring
lim |z|*/%s(z) =0, lim |z|*/?s(z) exists.
z—0+ z—0-—

Since the number of conditions is the same, the index is the same. Moreover,
these conditions define precisely the Dirichlet realization on M, and the
Neumann realization on M _. Hence

A(M) = ind(Do) = ind(Dg;,(My)) + ind(D, (M -))
= ZDir(-M-O-) + zNeu (H-) .

If we replace the condition “lim,_,o- |z|*/2s(z) exists” by the condition
“lim,_,o- |2|*/?s(z) = 0”, we add v(D) boundary conditions, and thus de-
crease the index by (D). Thus we obtain the final statement of Corollary 2,

A(M) = Api(M4) + Apie(M-) + v(D).

It remains to prove that the complementary space V above can be taken
in C°(S). This depends on two lemmas.

LEMMA 2. If u is in Dom(Dyg) and orthogonal (in the graph norm for
Do) to both Range(FPo) and C°(S), then u = 0.

Proof. The conditions on u are
(3.6) (u,v) + (Dou, Dov) =0 for all v in C°(S),
(3.7) (u, Pof) + (Dou,DoPof) =0 forall fin Lz(S) .

The first condition shows that u + D3u = 0 except perhaps on N, so Dyu
is in the maximal domain of D. We will show that Dou is actually in the
domain of Dy, so the equation u + D%u = 0 implies that u = 0.

For f supported in {|z| < 1/2}, DoPof = f, so the second condition
(3.7) gives

(3.8) Dou=—-Pju in {|z| < 1/2}.

But (like Py) Py maps into the domain of Dy. Since the domain of Dy is
defined by a limiting condition as z — 0%, it follows from (3.8) that Dou is
in the domain of Dy, and this completes the proof of Lemma 2.

LEMMA 3. Range(Py) has a linear complement spanned by elements of
c(S).

Proof. By Lemma 2, Range(P;) + C°(S) is dense in Dom(Dy). But
Range(Pp) has finite codimension in that space, so Range(Py) + C(S) is
also a closed subspace, and thus gives all of Dom(Dy). Now if {uy,...,ux}
span a linear complement of Range(Fp) in Dom(Dy), then each uj = Po f; +
vj for a v; in C2°(.5); then the v; span a linear complement of Range(F,).
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