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Introduction. Let G|H be a Riemannian homogeneous space, where
G is a connected Lie group and H < G is a closed subgroup; the action
of @ is assumed to be effective. A differential operator D on G |H is called
invariant if |

D(f-g)-97' = Df

for any smooth function f: G| H—R and any g¢@. A Riemannian symmetric
space M may be written as a homogeneous space G|H ([3], vol II, p.
224); let A be the algebra of invariant differential operators. Then U is
commutative ([2], p. 396). From that result Sumitomo raised the fol-
lowing problem ([8], p. 132, P 807):

ProBLEM. Let M be a Riemannian homogeneous space with com-
mutative algebra W. Is the Riceci tensor parallel?

The following theorem gives a partial answer:

THEOREM. Let M be a Riemannian homogeneous space with non-
positive sectional curvature and commutative algebra . Then the Ricci
tensor is parallel.

1. Differential operators of the second order. Let M be a connected
Riemannian manifold, dim M > 2; let g,; be the components of the metric
tensor ¢ in local coordinates (u‘); let V denote covariant differentiation.
As usual, raising and lowering of indices are defined. Let A4 denote the
Laplacian, Af = g¥V,V,f, f: M—R. Manifolds, maps, etc. are of class C*.

The following results are essential tools for the proof of the Theorem.

1.1. LEMmmMA (Lichnerowicz [4]). Let M be a differentiable manifold
with an affine connection V without torsion. Any differential operator D
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of order r on M can be expressed by
(1.1.1) Df = }a™""v, ...V, f,

p<r

where a’**? are the components of a contravariant symmetric tensor on M;
moreover, this expression is unique.

1.2. LEMMA (Sumitomo [9], Theorem 2.2). In order that a differential
operator D of second order, D = a”V,V;, commute with the Laplacian it
18 necessary and sufficient that the coefficient temsor satisfy the following
three equations:

(1.2.1) Viai; +Via5+Va,; =0,
(1,2,2) —gnV,.Vaaij —'2 ars.R,-,.sj—}—R,-ra,.j —{—Rjran- - O,
(1.2.3) a®V,R,,—2a"V,R,; = 0;

Ry, resp. Ry, are the components of the curvature tensor, resp. the Ricci
ensor (1).

1.3. LEMMA (Sumitomo [9], Theorem 2.3). Let D be a differential
operator of second order on M, D = a¥ V;V;. If DA = AD, then each
of the conditions

(1.3.1) M is compact,

(1.3.2) M is irreducible,

(1.3.3) rank(R;) =n = dimM

tmplies | !
(1.3.4) tracea;; = const

on M.

1.4. LEMMA. Let A be a differentiable symmetric (0, 2)-tensor (with
components A;) on M with

(14.1) trace A = const,
Then
(1.4.3) 344549 = —2 Y Ry(di— 4+ 97V, 45V, A7,
i<j

Ayy ooy A, are the eigenvalues of A with corresponding (orthonormal) eigen-
vectors K, ..., K, and K,; i3 the sectional curvature corresponding to {E;, E;}.

(1) The sign of the curvature tensor in [9] differs from that in [1], p. 30. We
use the notation of Eisenhardt.
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Proof. We have
(1.4.4) 3AA4,AY = g"(V,V, A,) A" + g7V A,V A",

Using (1.4.2) and the well-known Ricei identity ([1], p. 30; (11.16))
and the symmetry of A", we get

(1.4.5) —gPYV,V,A,) A" = ¢g?(V V, A, +V, V, A ) A"
=2¢"(V,V,Ap + Ry A+ Ry Ay) AY.
From (1.4.1) and (1.4.2) we have
(1.4.6) gV, A, = 0.

Let pe M; we choose local coordinates (uf) corresponding to {E,}"_,;
then for {E;, E;} (¢ #j; ¢,] fixed)

(1.4.7) K = By
(1.4.5)-(1.4.7) imply
(1.4.8) =PV, Y A,) AT =2 Y Ky(A— 4

i<j
(1.4.3) follows from (1.4.4) and (1.4.8).
For an analogous formula for Codazzi tensors with constant trace
compare (6] and [10], Corollary 1, Theorem 1.
1.5. COROLLARY. Let M be a Riemannian manifold with nonpositive

sectional curvature. Let A be a differentiable symmetric (0, 2)-tensor on M
which fulfills (1.4.1) and (1.4.2). If

(1.5.1) A,;AY = const,
then
(1-5.2) VkA‘ij = 0 on .M.

1.6. PROPOSITION. Let M be a Riemannian manifold of monpositive
curvature and let D be a differential operator of second order on M,

.D = a‘j V‘- Vj,
which commutes with the Laplacian. Then each of the conditions
(1.6.1) o', = const and aya” = const,
(1.6.2) rank(Ry) = n = dimM, a a” = const
implies ‘
(1.6.3) Vka‘j =0.

Proof by 1.2-1.5.
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The following lemma is a direct consequence of the de Rham de-
composition theorem (cf. [2], p. 187); we owe it to R. Walden.

1.7. LEMMA. Let M be a simply connected Riemannian manifold and
A a symmetric covariant constant (0, 2)-tensor on M. Then
(1.7.1)  the eigenvalues i,, ..., A, of A are constant;

(1.7.2)  the eigendistributions are inlegrable and parallel;

(1.7.3) M 1is the Riemannian product,
.M - MoXMl X oeeo X.Mk,

- of the integral manifolds M, (B = 0, ..., k) of the eigendistribu-
tions; each integral manifold is a totally geodesic submanifold
of M.

1.8. REMARK (cf. [7], § 1). If M is irreducible and simply connected,
VA = 0 implies A, = Ag;;, 4 = const; if M is reducible and if A(B),
resp. g(f), denote the tensors induced by 4, resp. g, on M,, then, if M,
is irreducible, VA = 0 implies -

(1.8.1) A(B) =29(B), B=0,...,k;

Az are the eigenvalues of 4.

1.9. CoROLLARY. Let M be a Riemannian manifold with monpositive
sectional curvature. Let A be a differeniiable symmetric (0, 2)-tensor on
M, Ay #vgy, vi: M—R, which fulfills
(1.9.1) VkAij +V1'Ajk+vj'Ak‘i = 0,

(1.9.2) trace A = const.

Then locally we have a decomposition of M (compare (1.8)-(1.9)) and
for each irreducible factor My we have

(1.9.3) Ap) = a’ﬁg‘(ﬂ)y B=0,...,k.

1.10. THEOREM. Let M be a simply connected Riemammian manifold
with monpositive sectional curvature. Let D be a differential operator of
second order,

D =d"V;V,. '
Let
(1.10.1) M be irreducible,
(1.10.2) a’ ay = const.

Then D commutes with the Laplacian A iff D = A4, A = const.
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If M is reducible, D induces differential operators D(f8) of second
erder on M (p); let 4(8) be the Laplacian of M (8). Then we have

1.11. TEEOREM. Let M be a simply connected Riemannian manifold
of monpositive sectional eurvature. If there exists a differential operator D
of second order on M which commutes with the Laplacian and a;a” = const,
then M 18 the Riemannian product M = M XM, X ... X M, of simply
connected totally geodesic submanifolds.

2. Generalized curvature tensor fields.

2.1. DEFINITION [4]. Let M be a Riemannian manifold, dimM > 3.
A differentiable (1, 3)-tensor L (with components L") will be called
a generalized curvature tensor on M if

(2.1.1) Ly = —Ity,,
(2.1.2) gthn'jk = ghrijn'a
(2.1.3)  ILPy +I*+I%; =0 (the first Bianchi identity).
We shall say that L is proper if L satisfies the second Bianchi
identity

\

(2.1.4) V, LDy +V; Ly + Vi I, = 0.
2.2. PROPOSITION ([4], p. 388, Proposition 2). Let dim M > 3. Let

A(M) := {L|L generalized curvature tensor on M},
Ao(M) := {Le A(M)|L*,, =0 on M},
Ay (M) = {Le A(M)|<L, L(0)) 1= Lpn L(0)** = 0, L(0)< Ag( M)},
A, (M) := {Le Ay(M)|L*y = 0}, >
Ay (M) := {Le Ao(M) <L, L(w)) =0, L(w)e Ao(M)}.

Then for every gemeralized curvature tensor field there is a natural
direct sum decomposition

(2.2.1) L =L1)+L(2)+L(w), LQ)eA (M), L(2)eA(M),
L(w)e A,(M), where

(2.2.2) LAYy, = R(L)(gy; 0% — g},

1
n(n—1)

(2.2.3) L(2)%p = ‘Tz)(R(L)"f 8k — R(L)y. 6} + g5 R(LY", —ga R(LYY) +

(n
2

+ m R(L) (g 5;" AR
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1

(2.2.4) L(w)y = Lhﬁﬁm(R(L),.ka;*—R(L),.,.«s,’:Jr
+ 9 B(L); — gy B(L)"%) + (n—1)(n—2) R(L)(g45 0% — 9. 67);
(2.2.5) R(L); := I,
are the components of the Ricci tensor Ric(L),
(2.2.6) R(L) := R(L)

18 the scalar curvature of L.

L(w) is called the conformal Weyl curvature tensor of L.
The following lemma is obvious:

2.3. LEMMA. Let L be a generalized curvature tensor on M, dim M > 3.
Then L(2) = 0 iff nR(L); = R(L)g;-.

2.4. THEOREM. Let M be a irreducible, simply connected Riemannian
manifold, dim M > 3, with monpositive sectional curvature. Let L be a
proper generalized curvature tensor over M. Then

(2.41) V;R(L)y+ V;R(L)+ ViR(L)y; =0 and R(L)7R(L); = const

imply
(2.4.2) L(i2) =0

on M.

Proof. (2.1.4) and (2.4.1) imply R(L) = const; the assertion follows
now from (1.9) and (2.3).

Proof of the Theorem. As M is homogeneous, we have R = const
and RYR, = const. From the commutativity of % we have D(Ric)4
= AD(Ric), where D(Ric) = R?V,V,. Then V(Ric) =0 from (1.6).
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