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ADAMS COMPLETION AND POSTNIKOV SYSTEMS

BY

S. NANDA (ST. JOHN’S, NEWFOUNDLAND)

1. Introduction. Given a category 2 and a family of morphisms §
of 2, let 2[8~'] be the category of fractions. For a given object ¥ of 2,
we have a contravariant functor

2[8-'](—, Y): 9 ->Ens.

If this funector is representable, then the representing object ¥Yg
is called the (generalized) Adams completion of Y with respect to the family
of morphisms 8 or the S-completion of Y (see [1]). This means that there
is a natural equivalence of functors defined on 2:

P87N(—, ¥) = 2(—, Yg).

For the category 2 of based CW-complexes and based maps and for
the family of morphisms S rendered invertible by a homology theory
defined on 2, Bousfield [2] and Deleanu [4] have shown that, for each
object Y of 2, the corresponding Adams completion Y4 always exists.
In [6], Deleanu has also shown that if certain conditions are imposed on an
arbitrary category 2 and a set of morphisms 8 of 2, then every object ¥
of 2 has the Adams completion with respect to S.

We show in this paper that the notion of Adams completion and the
Postnikov sections of a space X are intimately related. We formulate our
results in the CW-category. For n > 1, let 8, be the family of (n+1)-
equivalences in the CW-category. We show that, given a CW-complex X,
the Adams completion of X with respect to 8, is precisely the Postnikov
section of X. In what follows, € denotes the category of 0-connected
based CW-complexes and homotopy classes of maps. All maps and homo-
topies are assumed to be base-point preserving. By [X, Y] we mean the
homotopy classes of base-point preserving maps from X to Y, and * will
denote the base point for any space.

2. The family of (n-1)-equivalences. We now recall the following
definitions.

Definition 2.1. Amap f: X - Y in € is called an (n + 1)-equivalence
if f,: =, (X)—> =, (Y) is an isomorphism for m < n and onto for m = n 4 1.
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Definition 2.2. A family of morphisms 8 in a category 2 is said to
be closed if it contains the identities of € and is closed under finite com-

position.

Definition 2.3. A family of morphisms 8 in a category 2 is said
to admit a calculus of left fractions (see [2]) if the following conditions are
satisfied :

(i) 8 is closed under finite compositions and contains the identi-
ties of 2.
(i) Any diagram
Xa<«1l X, %X, withseS

can be embedded in a diagram

X, 2 > X,
7 ¢ with te 8.
x, : X,
(iii) Given
X,—>X, ::3 X,

in 9 with 8 € § and fs = gs, there exists X, £> X, in 9 such that if = tg.
PROPOSITION 2.1. Let 8 be a closed family of morphisms of & category 2
satisfying:
(i) of wwe 8 and ve 8, then u € 8;
(ii) every diagram

X, <1 X,% X,
can be embedded in a weak push-out diagram
X, 2 >X
7 o with teA.
XY 3 i -)i 4

Then 8 admits a calculus of left fractions.
For the proof see Theorem 1.3 of [6].

Let n > 1 be a fixed integer and let S, denote the set of all (n+41)-
equivalences of . We prove the following

PROPOSITION 2.2. 8, admits a calculus of left fractions.
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Proof. Clearly, 8, isclosed. It is also clear that if uv € §,andv e 8,,
then % € 8,,; thus condition (i) of Proposition 2.1 is satisfied. To prove
that condition (ii) is also satisfied, let X <L X, 2> X, be a given diagram
in € with 8 € 8,,. We replace X, by the mapping cylinder M, of the map s,
and the map & by the usual inclusion ¢, : X <~ M,. We now form the
push-out of 4, and f in ¥ (this is indeed a push-out in the category of all

topological spaces):
iC

X, >M,
f g
¥
Xs 7 >
Thus
W = XQUM..
i 4

Since ¢ is an (n-1)-equivalence, so is %, and, therefore, (M,, X,)
is (n +1)-connected. It will now be enough to prove that t e 8,,.
We let

W, = (Xlx [—1—, 1]) vX, and W,= (Xlx [0, i:I) v X,.
2 8 2 Vi

Then

1
W = W]_U.Wg . a;lld Wln.Wg = Xl X {E} gxl.

Moreover, it is evident that (W,, X,) is homotopically equivalent to
(M,, X,) which is (n-+41)-connected. We also infer that (W,, X,) is 0-
connected and that X, <~ W, and X, <~ W, are cofibrations (since we are
dealing with CW-complexes). Therefore, if j: (W,, X,, *) > (W, W,, *)
denotes the usual inclusion, then

Jut T (Wyy Xy, #) = 7, (W, Wy, %)

is an (% + 1)-isomorphism, i.e., j, i8 an isomorphism for m < n and onto for
m = n+1 (see [7], Theorem 16.29). Since (W,, X,, *) is (»+ 1)-connected,
we have =x,(W,, X,,*) =0 for m<n+1, and hence =, (W, W,, *)
= 0 for m < n+1. Moreover, since W, is homotopically equivalent to X3,
we have x,, (W, X4, *) = 0 for m <n+1. Thus ¢: X;— W is an (n+1)-
equivalence, and hence lies in §,. This completes the proof of the pro-
position.

3. Adams completion of a space with respect to S,. We shall show in
this section that any object of ¥ has an Adams completion with respect
to the family of morphisms S,. We need the following theorem of Deleanu
([6], Theorem 1):
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THEOREM 3.1. Let % be a fived Grothendieck umiverse, let 2 be a co-
complete U-category, and S a family of morphisms admitting a calculus of
left fractions and satisfying the following axiom of comparability with co-
products:

(A) If 8;: X;— Y, lies in S for each t € I, where the index set I is an
element of the universe «, then

[[s: ][] X ~]] ¥
lies in 8.

(B) There exists a subset Sx of the set {8: X — X'|s € 8} such that Sx
18 an element of the universe # and for each 8: X — X', 8 € 8, there exist
an 8’ € Sx and a morphism u of D rendering the following diagram commu-
tative:

X

Y X"
X . . >

Then the Adams completion Xg of X does exist.

In order to use this result, let # be a fixed Grothendieck universe
such that the category of OW-complexes and homotopy classes of maps
between them is a #-category. Since S' can be given the structure of a OW-
complex, [8', §'] ~ Z is an element of %, and it follows from the axioms
of a Grothendieck universe that Z*, the set of positive integers, is also
an element of . We shall use this fact in proving the following

THEOREM 3.2. Every object X of € has an Adams completion with respect
to 8,.

Proof. Let € be a %-category. Clearly, ¢ is cocomplete and S, admits
a calculus of left fractions by Proposition 2.2. It will now suffice to show
that 8, satisfies conditions (A) and (B) of Theorem 3.1.

Let s;: X;—~ Y;,42el,liein §,, i.e., each 8, is an (n+1)-equivalence.
Then there are a relative OW-complex (Z;, X;) with cells in dim > n+2
and a map u;: Z;— Y, which is a weak homotopy equivalence (and,
therefore, a homotopy equivalence) and such that ;| X; = s,. Therefore,

(V 2, VX,
el fel
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is a relative CW-complex with cells in dim > »+2 and \/ Z; is homo-
iel
topically equivalent to \/ Y;. It follows from these facts that
fel

n"’(;e\/rzi’th‘) =0 form<nit1

showing that

Va: VX;-» VY,
iel el teI

is an (»+1)-equivalence; thus, 8, satisfies condition (A) of Theorem 3.1.
To prove that S, satisfies condition (B) of Theorem 3.1, we proceed
a8 follows. Given X in ¥, we let

8y ={8: X> Y| (Y, X) is a relative CW-complex
with cells in dim > n+2}.

Clearly, 8y < 8,. Moreover, if 8: X > Y is in §,, then we can find
& CW-complex such that

(i) (Z, X) has cells in dim > n+ 2.
(ii) There is & map #: Z - Y which is a homotopy equivalence and
which extends s. If » denotes the homotopy inverse of « and 8': X - Z

the usual inclusion, then the following diagrain is easily seen to be homo-
topy commutative:

X

’
8

o <€

> 2

It will now be enough to prove that Sy € #. We write

A, ={8: X—> Y |(Y,X) has cells ™
such that n+2 < dim(e™) <n+k+1},

so that we have 8x = | 4,, k varying over the positive integers. We use
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induction to show that, for every k> 1, A, e#. For k =1, we have

A, ={8: X>Y|(Y,X) is a relative CW-complex
having cells in dim n+42 only}.

Therefore, Y must be of the form

Y =X uet?
a;
where a,: 8"*' - X and ¢ € I for some index set I. It is also evident that
every family {a;: 8"*! > X} < [8"*+!, X] determines a space Y such that
(Y, X) is a relative CW-complex with cells in dim »+2 only. Thus,
A, ~ P[8"*!, X], where P denotes the power set. Since [8"t!, X]e %, it
follows from the axioms of a Grothendieck universe (see [3], p. 10) that
P8, X]eu; thus A, e%.

We now assume inductively that 4, e . To show that 4, , €%,
lets: X > Y bein 4,,i.e., (Y, X) is a relative CW-complex having cells e™
such that

n+2 < dim(e™)<n+k+1.

Let {a.};; be a family of maps with a;: 8"*¥+! ~ ¥ for some index
set I. It is then clear that the inclusion

k+2
XY ueptht
aq
is in 4,,,. Moreover, every map s: X - Z of A, , arises in this way.
Therefore,

Ak+1 = g)P[’SM-kH’ Y]’

where the union is taken over all Y such that s: X — Y is in 4,. Since
A, e and P[8"**, Y] e, we have A, , € . Similarly, since the set
of positive integers is an element of the universe #, so is the union
(J4; = 8x. This completes the proof of Theorem 3.2.

4. Adams completion and Postnikov sections. We show in this section
that, for any space X in ¢, the Adams completion X, of X with respect
to 8, is precisely the n-th Postnikov section of X. To prove this, we need
a few results of a general nature.

PROPOSITION 4.1. Let S be a family of morphisms of 2. If the object Z
48 the Adams completion of the object Y, then there i3 a map e: Y —~Z which
18 couniversal; i.e., given 8: Y — Z, in 8, there exists a unique morphism
t: Z,—> Z such that ts = 6.
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Proof. Consider the commutative diagram
2[87' 1Y, ¥)—=—>2(Y, Z)

9[S.—I](Za Y) _gr—*g(zl’ Z)

where s* and 8* are defined as follows. Let F: 2 — 2[8~'] be the canon-
ical functor. Then, for any morphism 6 : Z, - Y in 2[8"'], we define
8t(0) = 60 F(s) and, for any morphism f: Z, > Z in 9, we define s*(f)
= fos. For 8 € 8, the map s* is a bijection since F(s) is an isomorphism;
it is therefore evident that s* is a bijection. We put ¢ = 7(1y), where 1,
is the identity morphism of ¥ in 2[8~!]. It is clear that there is a unique ¢
in 9(Z,,Z) such that s*(f) =tos =e.

Remark. It is not claimed that e e 8. Similarly, the unique morphism
t need not be in 8.

PROPOSITION 4.2. Let Z be the Adams completion of ¥ and f: K - Z
a morphism in 2. Let g: K — X be a morphism in 2 such that F(g) i8 an
isomorphism in D[8~']. Then there exists a unique morphism h: X — Z
such that f = hg.

Proof. The proof is only a slight variation of that of Proposition 4.1.
We consider the commutative diagram

281K, Y)—2>2(K, 2)

i 3

2[8~)(X, ¥)—2>2(X, Z)

where gt and g* are defined as s* and s* in the proof of Proposition 4.1.
Since F(g) is an isomorphism in 2[87'], g* is bijective implying that g*
is bijective; so the required map h: X — Z exists, and this completes
the proof. '

PROPOSITION 4.3. Every object ¥ of 2 admits an S-completion if and
only if the canonical functor F: 2 — D[8~'] has a right adjoint G. In that
case, the S-completion of Y is G(Y).

This is Corollary 2.2 of [6].

PROPOSITION 4.4. If the canonical functor F: 2 — 2[8~'] has a right
adjoint @, then G i8 full and faithful.

This is Proposition 2.3 of [6].

PrOPOSITION 4.5. If F: 9 > E,G: E—~> 92, F — G, and @ is full and
Sfaithful, then the unit e: 1 — GF of the adjunction belongs to the set of
morphisms rendered invertible by F.

This is Proposition 2.4 of [6].
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We now adapt these results to our situation, keeping n fixed for
the remainder of this section. We have seen by Theorem 3.2 that every
object of ¢ has an 8,-completion. Propositions 4.3 and 4.4 then imply
that the canonical functor F: € — ¢[8;'] has a right adjoint G which
is full and faithful. Moreover, for any object Y of ¢, the Adams comple-
tion of Y is simply G(Y). We can then apply Proposition 4.5 to conclude
that the unit ¢: 1 — GF of the adjunction belongs to the set of morphisms
rendered invertible by F. Observe that, for any object Y of ¢,

e(Y): Y - GF(Y) = G(Y)

is the same map e¢: Y — Z as constructed in Proposition 4.1.

We show next that this map e: Y — Z (where Z is the S,-completion
of Y) is in §,. Recall that since §, admits a calculus of left fractions,
the objects and morphisms of the category €[S, '] can be explicitly described
(see [6]). The objects of ¥[8,'] are the same as those of ¥. A morphism
a: X — Y in ¥[8, '] can be represented by a pair (f, 8) withs e 8,,:

X Y

Any two such pairs (f, 8) and (f’, 8') represent the same morphism a
if there exists a diagram

KI
A
r o
.
X Y ZII
8
! g
v
K

such that gs = g's’ € 8, and gf = ¢’f’. The composition of two mor-
phisms represented by pairs (f, 8) and (f’, 8’) is represented by the pair
(kf, us'), where u € 8, and k are morphisms in € such that the following
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|

diagram is commutative:

A 2

Notice that the existence of the dotted arrows % and k is guaranteed
by the fact that S, admits a calculus of left fractions. The identity mor-
phism 1 of X in ¢[8;'] is represented by a pair

X X
1dx idx
N 4
X

(where id x is the identity morphism of X in %) or, equivalently, by any pair

X

X
\ “
Y

XI

with 4 € 8,,. The canonical functor F: € — ¢[8,'] is then defined as fol-
lows. For an object X in ¢, F(X) = X and, for a morphism f: X - Y in
%, F(f) = a, where a is represented by the pair (f, 1p).

PROPOSITION 4.6. Let Y be an object of € and Z its 8,-completion.
Let e: Y — Z be the map defined in Proposition 4.1. Then ¢ 18 in 8,,.
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Proof. It follows from the discussion above that F(e) is an isomor-
phism in €[8;']. Let (g, 8) be the inverse of F(¢) = (e, 1;). Thus,

(9,8)o(e, 12) = (1p, 1p).
Therefore, we have a diagram

Y
0\
ly u
1y
Y Z Y K
\ll\ s
e v
z X g
\ .
k.
a4
XI

with w = vis € S, and u = vke. Since 4, = v4kse, and u, is8 a mono-
morphism in dim <n, e i8 a monomorphism in dim < n. Moreover,
Proposition 4.1 implies that there is a unique map %’: K — Z with v'u = e:

Y ;Z
///
u 7
S
/
s
\(//
K

We thus have e = y'u = u'vke:

(4

Y > 7z

u'vk

v
Z

Since ¥ (e) is an isomorphism in ¢ [8;'], it follows from Proposition 4.2
that u'vk = 1,. Therefore, wyvskse = m4s(Z), which implies that u, is
an epimorphism in all dimensions. This together with the fact that wu,
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is an epimorphism in dim < # + 1 implies that e, = u,u, is an epimorphism
in dim <n+1. Thus, e€ S,.

For each n, we denote this map from an object X to its 8,-completion
X, by e,.

THEOREM 4.1. For any X in €, the S,-completion X, of X is the n-th
Postnikov section of X.

Proof. Since X, is the 8,-completion of X, it follows from Proposi-
tion 4.6 that there is & map ¢,: X - X, in 8, having the couniversal
property. Since ¢, € 8,,, ¢, i8 an (n + 1)-equivalence; thus =,,(X) ~ =,(X,)
for m < n.

We now show that #,,(X,) = 0form > n. Let f: 8™ — X, with m > n.
Let 8 denote the inclusion

X, X, y et

then, clearly, s € S,,. Consider the diagram

en

e

Y
X, vent?
s

It follows from the couniversal property of e, that there is a map

t: X,ue™t! > X,
s
such that ¢s6,, = 0,,. This implies that f ~ 0; thus, =, (X,) = 0 for m > n.
Moreover, since ¢,: X - X, is an (n+1)-equivalence, (X,, X) can be
considered as a relative CW-complex with cells in dim > n+2.

Now we show that for every n > 1 there exists a map »,,,,: X,,, > X,
such that =, ,e,,, = ¢,. Indeed, since ¢,,,: X - X, ., is an (n+2)-
equivalence, it is also an (n+ 1)-equivalence, and the couniversal prop-
erty of ¢, implies that there is a map =x,.,: X,,,—> X, such that

12

= Tpnt16n41-
Remarks. (1) We follow the definition of Postnikov systems as given
in [7]. The maps {=,} can, of course, be replaced by fibrations in the

usual manner.
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(2) By applying the procedure given above, we get a K (=, n)-space
as the 8,-completion of an M (x, n)-space.
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