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MARTINGALES IN BANACH SPACES
FOR WHICH THE CONVERGENCE WITH PROBABILITY ONE,
IN PROBABILITY AND IN LAW (OOINCIDE

BY

A. KORZENIOWSKI (WROCLAW)

0. Introduction. A general characterization of the convergence of
sums of independent random variables in Banach spaces is due to Ito and
Nisio [6]. It states that the convergence almost surely, in probability,
and in law are equivalent. Deleting the independence assumption we
find that even for martingales the situation changes. It is well known
that a martingale convergent in probability need not be convergent almost
surely [11] and for the convergence in probability the convergence in law is
not sufficient either. Thus the question appears: under what assumptions
on a martingale taking values in a Banach space the above convergences
are equivalent? The answer contained in our Theorem 1 is, to the best
of our knowledge, unknown even for the real line. As a corollary we also
get a condition for a.s. convergence of an asymptotic martingale, the
notion introduced and investigated by Chacon and Sucheston [3].

Let (2, #,P) be a probability space and %, c Fyc...c &
a sequence of sub-o-fields. In order to avoid analytical problems connected
with the measurable selection of random maps we assume the complete-
ness of P. Let E be a Banach space and #(F) the class of all Borel subsets.
A random variable is a strongly measurable map from Q into E. The
integral is taken in the Bochner sense. The set of all bounded stopping
times, i.e. taking a finite number of values ordered by < a.s., is denoted
by 7. An adapted sequence (X,, &,) is said to be an asymptotic martingale
(cf. [3]) if (f X,),er cOnVerges, ie. if there is a vector z € E with the
property: for each ¢ > 0 there exists a o, € T such that

“fxa—z”< ¢ for o> a,.

If [X, is constant, then X, is said to be a martingale.
Throughout this paper, F is assumed to be separable and = stands
for a locally convex Hausdorff topology on E not stronger than the norm
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topology such that the unit ball of EF is z-closed. Recall that a sequence of
probability measures 4, on (E, B (E)) converges t-weakly to a probability
measure u if

[ 1@ po(d) > [ f(@)p(da)
E E

for all z-continuous, bounded functions f from F into the real line.
by 18 said to be r-conditionally compact if its every subsequence u,. con-
tains a subsequence u,.. which converges r-weakly.

A sequence of random variables X, is said to be r-relatively compact
tn probability if its every subsequence X,. contains a subsequence X,,..
which converges in the topology r in probability.

1. Basic facts.

PROPOSITION 1. Every locally convex topology T on E, mot stronger
than the norm topology, can be weakened to a locally convex topology v, with
the following properties:

(i) 7, 8 metrizable under a semi-norm | |,

(ii) v, generates all Borel sets #(E).

Proof. Since F is separable, there exists a countable weakly
sequentially dense subset C of z-continuous linear functionals. The set

D = {@*cE| |z*| <1}nC

generates a topology on E (weaker than the weak topology of E) which
is obviously locally convex and metrizable, e.g., by the semi-norm

oo
2: 1 |z*(w)|
= —_— E, z*eD.

It is clear that |-|, satisfies (i) and (ii).
PROPOSITION 2. Let ¥ be a Polish space with the o-field of Borel
subsets B (X). Consider measurable maps

¢: (2, F,P)~> (¥,2(%)) and f: (E,3(E) > (%, 2(%))
with the property: f~'(x) € B(E) 18 closed for each x € ¥. If
P({wlp(w) ef(B)}) =1,

then there exists a random variable X such that ¢ can be factorized in the
following way:

@ (w) =f(X(w)) a.s.
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Proof. Define a multifunction T': & — #(E) as follows:

'(x) if xef(B),

T(x) = .
0 otherwise.

Notice that f(E), being an analytic set (cf. [9]), belongs to (&),

where #(Z) is a ¢(P)-completion of #(%) (cf. [10]). Since T is closed-set
valued, and the graph of T, i.e.

{(wﬁ'/)egXEl zeZ,yeT(x)},

is #(Z) x #(E)-measurable, so by Theorem 1 (cf. [12], p. 215-236)
T has the following property:

{xe x| T(x)nG # 9B} c#(Z) for all open G € Z(E).

Now, by a general theorem on selectors (cf. [7]), there exists a single-
valued measurable map

T,: (%, #(%)) > (E, 2(E))

such that T (x) € T'(x) for all . To complete the proof put X (w) = T, (q,(a,))
and observe that, by the completeness of P, X(w) is measurable as a
superposition of measurable maps.

ProPoSITION 3. Let X, be a sequence of E-valued random variables
and let t be a locally convex topology on E, not stronger than the norm topology.
If X, (w) 18 T-relatively compact for almost all » € Q, then there exists a random
variable X (w) such that X (w) i8 a v-cluster point of X, (w) for almost all w.

Proof. We need only to prove that X (w) can be chosen in a meas-
urable way. Let C(w) = C(X,(®)) denote the set of all z-cluster points
of the sequence X,(w) for each w. Since the set of all r,-cluster points
of {X,(w)} is equal to O(w) and since the graph of the 7z,-closed set
valued map o — C(w), i.e.

0 o o©

{(w,y) e 2xE| we,yel(w)} = ,QuQ L_Jl{(w,y)l X (@) —yll, < 1

11
k|’
is by Proposition 1 F x Z(E)-measurable, by the same argument as in
Proposition 2 we get a measurable selector X (w).

PROPOSITION 4. Let X (w) be as in Proposition 3. Then there exists
a sequence of strictly increasing stopping times o, € T such that X op (©) > X(w)
m |, a.8.

The statement is known for the real line (cf. Lemma 1 in [1]) and in
our case it can easily be obtained by using the real-line result. We omit
the proof.

In [3] we find the following:
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Facr 1. If W 48 a property of an asymplotic martingale (X,), then
(WA s;'1p f 1 Xl < 00) => X, converges a.s.
whenever
(W/\ sgp f X, |l < ooA sgp X, eL,) => X, converges a.s.

FAcT 2. For an asympiotic martingale wilh sup (X, || € L,, the limii
pdas
lim | X,
r]

ewists for any A from the o-field generated by \ ) &,.
Note that, in the martingale case, L,-boundedness, i.e.

sup [ X, < oo,
n
implies
sup [ I X,Jl < oo,
y

whence both facts follow immediately.

2. Main result.

THEOREM 1. Let X, be an E-valued martingale with the correspond-
ing sequence of probability laws u, and let v be a locally convex topology
on E, not stronger than the norm topology. If

(1) sup [ |1X,/l < oo,
n

then the following conditions are equivalent:

(a) X, converges a.s.,

(b) X, converges in probability,

(¢) X,(w) 28 T-relatively compact for almost all w,

(d) X, ts v-relatively compact in probability,

(e) u, converges in law,

(£f) p, i8 z-conditionally compact.

Proof. The implications (a) = (b) = (¢), (a) = (e) = (f), and (a) = (d)
are evident. Therefore, it remains to prove (¢) = (a), (d) = (a), and
(£) = (a).

(f) = (a). Let D be as in the proof of Proposition 1. By (1), for z* € D,
2*(X,), being a real-valued L,-bounded martinagle, converges to I(z*)
outside a P-null set N (D). We prove that X, converges in ||-||,, i.e. there
exists a random variable X (w) such that

2*(X,) > o*(X) a.s.,, 2*eD.
By the assumption, take u, which converges r-weakly to u. For
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real t,,%,,...,1%, and 2}, 2;, ..., Ty € D we have

[ exp [iZt,l(w}‘)]P(dw) =lim [ exp [iZt,w}'(Xnk)]P(dw)
Q J=1

j=1 ng Q

= lim f exp [”(2 t,a;;') (w)] fin,, (dw) = fexp [iZt,m}'(w)]y(dw).
%k E j=1 E J=1
Therefore, R*-valued maps

p(@) = (Ua")prep and  f(2) = (2°(9))srep
defined on the probability spaces (2, #, P) and (E, #(E), ), respectively,
have the same distribution law, whence
Po| ¢(o) ef(E)) = 1.

Now from Proposition 2 for & = (R*, #(R*)), and for ¢ and f as

above we get the factorization
I(z*) = 2" (X(w)) a8, 2*eD,

i.e. z*(X,) - 2*(X).

To prove the a.s. strong convergence consider a countable family

of real-valued martingales z*(X,), #* € D. From (1) and the Hahn-Banach
theorem for D (sup «*(z) = |lz|) it follows that

xz*eD

sup [ supa*(X,) = sup [ | X} < oo.
n n

z*eD
Therefore, from Lemma V-2-9 in [8] we obtain

(2) supz* (X,) - supz*(X) a.s.

z*eD z*eD

For each a € ¥ we have
I X, (@) —al = supa*(X,(w)—a)

x*eD

outside a P-null set N(a, D). By (2) we get
lim | X, (w) —all = [X(w)—all
n

outside the P-null set N(a, D), where & belongs to any countable dense
gset in E. Thus we obtain

lim || X, (0) — X ()| =0 a.s.

(d) = (a). From the assumption and Proposition 1 it follows that
there is a subsequence X, which converges a.s. to X in ||-[l, which implies
the strong convergence by the first part of the proof.

(e) = (a) It suffices to show that X, converges in |‘||,. Assume the
contrary. By Proposition 3 we may choose random variables X and X’
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such that X # X' on a P-positive set A belonging to the o-field spanned
by U &,. Moreover, A can be taken in such a way that the corresponding
integrals over A are also different. Next, by Proposition 4, there are se-
quences o, and o, . of stopping times for which

”X —Xau”o - 07 "X, —'Xa,,,"o -0 a.8.
Let x; € D separate (X and [X'. From Fact 1 and from the
A A

Lebesgue dominated convergence theorem it follows that
lim [a3(X,) = [a5(X) # [a3(X) =lim [a}(X,,),
n 4 A A n o4

whence [ x;(X,) diverges, which contradicts Fact 2.
A4

Theorem 1 gives a condition on a.s. convergence for martingales in
Banach spaces without RNP (Radon-Nikodym property). In a space
with RNP, L,-boundedness suffices for a.s. convergence. This follows
immediately from our theorem. In fact, by virtue of Fact 1, lim [ X,

n A

where A € a(U F,), is a vector measure with bounded total variation,
8o it has an integral representation by a random variable X. Therefore,

lim [X, = [X, AedUZF),
n 4 A

so (c) is trivially fulfilled, since X, converges in ||-|,.
THEOREM 2. Let X, be an E-valued asymplotic martingale such that

(3) sup [ |12, < o0

and let T be a locally convex topology on E, not stronger than the norm topology.
Then the following conditions are equivalent:

(a) X, converges t a.s.,

(b) X, (w) 48 T-relatively compact for almost all w € Q.

For the proof see (¢) = (a) in the proof of Theorem 1.

COROLLARY. If E 18 t-compactly generated (i.e. a unit ball of E is t-compact
as, for instance, in all duals with T being a weak *-topology), then an asymp-
totic martingale satisfying (3) converges t a.s.

Proof. By the maximal Lemma 1 of [3] we have

1
P(sup | X, | > k) < 7 sup f 1,1,

thus (b) of Theorem 2 holds.
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