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Introduction. In this note we shall prove the uniqueness of a non-
-negative solution of the Cauchy problem for the general second order
linear parabolic equation with smooth but unbounded coefficients. The
uniqueness of non-negative solutions of parabolic equations has been
considered in geveral papers beginning with the well-known work of
Widder [9] on the equation of heat conduction. Various extensions of
Widder’s result to more general parabolic equations can be found in
papers [1], [6], [7], and [8]. In all of these papers, however, the coef-
ficients of the equation are assumed to be bounded. Here we shall deal
with equations whose coefficients grow at infinity in various ways.

To prove our main result we use several auxiliary theorems. The first
of these is a maximum principle for parabolic equations with unbounded
coefficients recently proved by Bodanko in paper [5]. Moreover,
we use certain properties of the fundamental solution of such equations
which were derived in paper [3] and a uniqueness theorem which
was proved in paper [2]. It turns out that the required result from
paper [2] is not sharp enough in one of the extreme cases for appli-
cation to the problem which we treat here. In the appendix to this note
we prove the appropriate sharpened version of this theorem. The same
method also yields an improved version of Bodanko’s theorem and of
the results of paper [3]. Although these improved results are not
actually needed for our work, we include their proofs in the appendix.
The key new result which is needed for the proof of our uniqueness the-
orem is an estimate from below for the fundamental solution which
generalizes an estimate derived in [4].

We consider the differential operator

Lu = ay;(z, 1) Unya, + b3 (25 1) Uy +- 0 (0, E) 10—

in the strip 8 = E" x (0, T]for some fixed T > 0, where E" is the Euclidean
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n-space. Here and throughout this note we use the usual summation
convention. We make the following assumptions.

(i) The coefficients a;, b;, ¢ an their derivatives a;;4,, Wif gy by,
are locally Holder continuous in S. For some 1, 0 < 1< 2, there exist
positive constants K,, K, and K, such that

gy < Ky (Jol2+ D)2, ag ), b < Ko (lo2+1)",
|a'ii,x.ixj|’ 1big,ly 1] < Ks(]wlz‘l'l)llz
for all (x,1)eS.
(ii) There exists a constant y > 0 such that
ai; (@, 1) By = v (224 1)# 8 p)2

for all (w,t)eS8 and B = (Byy ..., fn) e E".
Note that if we write the operator adjoint to L in the form

Lu = ay(&, T)“$i5j+5i(5, ) g, + (&, T)utu,,
then it follows from (i) that
(1) 1bi < Ko(|E2+ 1), |6] < Ky(1&24+1)"

for some positive constants 11’2 and 123.

A function u = u(x,t) is said to be a reqular solution of Lu = 0
(or < 0) if » is continuous in § = E"x[0,T], and if the derivatives
of v which appear in L are continuous and satisfy Lu = 0 (or < 0) at
every point of S.

We shall prove the following

THEOREM. Suppose that the coefficients of L satisfy (i) and (ii). If
uy (x, t) and u,(x,t) are two non-negative reqular solutions of Lu = 0 in S
and if wu,(®,0) = uy(x, 0) for all wek", then wu(x,t) = u,(x,t) in 8.

Auxiliary results. We shall use certain results from [2], [3] and [5].
For the convenience of the reader we list them here.

THEOREM B. Let Q = E" be an arbitrary unbounded open domain.
Suppose that the coefficients of L satisfy

a;(z, )Bif; =0  for all (z,1)eQx[0,T], BeE",
and
lagl < A(l2[2+ )2, (b < B(l2l2+1)"7, e < O(lo|*+1)""

in Q X [0, T] for some positive constants A, B, and C. If w is a reqular
solution of Lu < 0 in 2x(0,T] such that

u(e,t) >0 for (x,t)e{02x[0,T]} v {2x(t=0)}
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and
— Mexp{klog(|z|2+1)+1}* if 1=0,

u(x,t) > , . )
— M exp{k(|x|2+1)""} if 0<1<K2

in Qx(0,T] for some positive constants M and k, then wu(x,t)>=>0 in
Qx[0,T].

Theorem B has been proved in the case 0 < 1< 2 by Bodanko in
paper [5]. The proof for 4 = 0 is given in the appendix to this note.
Theorem B is, of course, also valid (with obvious changes) for the
adjoint operator I when condition (i) is satisfied.

The next theorem summarizes some of the results proved in [3].
In the case 2 = 0 the results of paper [3] can be sharpened (cf. the ap-
pendix). However, the theorem which we quote below suffices for our
purposes.

THEOREM ABL. Suppose that the coefficients of L satisfy (i) and (ii).
Then for some T, >0 the fundamental solution I'(x,t; &, 1) of Lu =
exists for all x, EeB", 0 <Tt<t<T, and ,

(2) J Tty ty & v)as < M,
E?’b
where
Klog(lz*+1)  if A=0,

¢@) k(|e|2 4 1)*? if 0<Ai<?2

and M,k are positive constants. Moreover, I'(x,t; &, 7) = 0 and it is the
Jfundamental solution of the adjoint equation Lu =0 as a function of (&, 7).

Note that we may assume that 7 in the definition of the strip S is
< T,. For if this is not the case, the proof of the uniqueness theorem
can be carried out step by step in the usual way.

THEOREM AB2. Suppose that the coefficients of L satisfy (i) and (ii).
If w=wu(z,t) is a reqular solution of Lu = 0 in S such that u(x, 0) =0
for xe " and

[ [ lulexp[— {kolog(jx|2+1)+1}2]dedt < co  if A =0
S
or

[[lulexp{—ko(ja|24+ 1)} dadt < 0o if 0<A<2
S

for some positive constant k,, then u = 0 in S.

Theorem AB2 is proved in paper [2] for 0 < A< 2 and in the
appendix to this note for 4 = 0. We observe that both Theorems AB1
and AB2 hold if the coefficients of L satisfy (i) and if (ii) is replaced by
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the weaker condition (iii) ay(z,t)p:5; = y|p|* for (v,t)eS and feE".
The role of condition (ii) will become apparent in the proof of Lemma 2
below.

Proof of the Theorem. The proof of our uniqueness theorem
is essentially contained in the following three lemmas. The main idea
is to show that every non-negative solution of Lu = 0 satisfies the growth
condition of Theorem AB2.

LeMmMA 1. If the coefficients of L satisfy (i) and (ii), and if w is a non-
negative requlayr solution of Lu = 0, then

w(@, 1) > [I(@,t, & u(é, 1)dé
Eﬂ

for all zeB", 0 <7 <t<T.

Proof. Let h, = h,(x) be a continuous function defined on E"
such that h, =1 for |z| < p—1, h, = 0 for |v| > p and 0 < k, < 1, where
o >1 is arbitrary. We define

M, = maxh,(x)u(x,?)
S
and consider the function

u(m, ) = [I'(@,t; & T)hy(£)u(&, 7)dE
En
on E"x(r,T]. It follows from (1) that u,(z,?) < M,e?®. By the defi-
nition of fundamental solution (e¢f. [3])

Uy (2, 1) = hy(Z)u (%, 7)< u(@,7) a8 (x,t) - (Z,74).

Moreover, w,(x,t) is a regular solution of Lu = 0 in K" X(z ,T'].
Thus, by Theorem B (with 2 = E"), we obtain u(w,t)—wu,(x,t) > 0.
The assertion of the Lemma now follows from the Lebesgue monotone
convergence theorem if we let p — oco.

Our next result is an estimate from below for the fundamental
solution of Lu = 0.

LeMMA 2. Let the coefficients of L satisfy (i) and (ii). Fiz TeE" and
te(0, T]. Then for any ee(0,t) there exist positive constants A = A(e, ),
u = u(e, x) such that

exp[—puf{log(|z—&2+1)}*] o 1=0,
exp(— u|Z— £ if 0<A<2
for all (&,7)eB"x[0,t—¢].

A gimilar result also holds with & fixed and 2 variable. A special
case of Lemma 2 and the corresponding result with the roles of x and &

(3) I'(®@,1;&,7)=4
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interchanged was proved in [4]. Note that it is here that we actually
use condition (ii). If we assume that L satisfies (i) and (iii) then in place
of (3) we would get (by essentially the same proof)

(4) I'(z,t; &, 7) = Aexp(—pu|Z— &%)

regardless of the value of 1. If, for example, L = A—0d/dt, then clearly
(i) and (iii) are satisfied and the fundamental solution has exactly the
order of growth indicated by (4). Thus we cannot expect to get the esti-
mate (3) without a condition stronger than (iii).

Proof. Suppose first that 0 < 1< 2 and consider the funection
—|EF— §|”)

t—t—¢'

(5) V@ £, ) =exp(

for (&,7)eD ={|z—&| > R} x[0,t—¢’), where & =¢/2, R = |z|+1,
and v = »(%) is a positive constant which we shall choose so that LV > 0
for (&, t)eD. Indeed we have

v — (t__j__) R e — &Py (@ — &) (5 — &) —
—vA(A—2)|Z— & (t—T1— ") 0y (B — &) (Fj— &;)—
— A |E— & t—Tr—e)ay+vA|F— &Rt — v — 8')51'(51'— &)+
te(t—r—e)2—r|T— &1},

Thus in view of (1), (i) and (ii), |[z— &| > R, and 0 < 1 < 2 we obtain

~ |4
>
(6) LV=> (t—7—¢€')?

—vInTE, R~ (1§24 1)z — g2 —
—v MK (|82 1)@ &' — T2 B (|82 4 1) —vjz— &1}

for (&, 1)eD.
Set

prazy (|82 1) — g

2
K, = K,(%) = inf i

1950 IE-— EI2

It is easy to show that K, > 0, whence
(7) [§P 1= K|z — &,

On the other hand, since |Z—&| > R = |#|+1 in D we have
(8) (162 + 12 < (18] +1)° < (|6—3|+ 3| +1)f < 27|z — &

Colloquium Mathematicum, t. XVIII 9
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for any f > 0. Making use of (7) and (8), it follows from (6) that

~ |z— &'V
LV ——
u—r—sVQ”)
for (&, t)eD, where
Q(r) = 2Z2yKF My — (2 pATK R+ 2nATK ,+1)v—2* T2 K.
Y

Since ¢(0) < 0 it is clear that @(v) = 0 has at least one positive

root. Thus if we set » equal to the largest root of Q(») = 0 we have LV > 0
in D,
We define

A= A(e, %) =minl'(F,t; &,7)  for (& 7)e(|i— & < R) %[0, i—e].

It follows from the strong maximum principle that I'(z, t; 5, 7) >0

(cf. [4]). Thus A > 0. Since I'" is the fundamental solution of Lu — 0
as a function of (&, 7), the function

2(&,7) = I'(z, t; &, T)—AV(Z,1; &, 1)

satisfies Lz < 0 in D. Moreover, z > 0 on the set (|7— &| = R) x[0, {—¢’]
and hmz(E, )= 0 as (&, 7) - (£, t—a’) for any { such that |z— (| > R
Therefore, by Theorem B, we conclude that z(&,7)>=0 in D and, in
particular, for (&, 7)e(|Z— & = R)x[0,t—e]. In the latter set {—7— ¢’
> ¢’ = ¢[2 so that we have

(9) (&, t; & 7) > Aexp(—pu|z— £/"),

where u = 2v/e. Finally, by the definition of A it follows that the esti-
mate (9) holds throughout the strip E" x[0,t—¢].

In case 4 = 0 the proof is quite similar except that the function V
defined by (5) is replaced by

Vi@ 6 = oxp| == oo g+ 1]

Proceeding as in the case 2> 0 and using formula (8) together with
log(|z—&2+1) > log 2 for |#— & > R and
g LS [E— &2
le—ei>1 (|7— &[241)2
we obtain the estimate

{log(|z— £[24-1)}*

(t—t—¢')?

=

VQ*(v),

where again @*(v) is a quadratic polynomial in » such that Q*(0)< 0
and @*(») > +oco as ¥ - +oo.
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We now apply Lemmas 1 and 2 to prove

LEMMA 3. Suppose u is a non-negative regular solution of Lu = 0
in S. Then

T2
(10) [ [u(&, vyexp[—u{log(|€2+1)}2]dédr < 0o if A=0
0 gn
or
T/2
(11) [ Jug nexp(—ulefasar< o if 0<i<2,
o gn

where u = u(T[2,0).
Proof. Apply Lemma 1 with # = 0 and ¢ = T to obtain

[ 10,75 & v)u(&, 1)dé < u(0, T)

ETb
for te[0, 7). Hence, by Lemma 2 with @ =0, t =1 and ¢ =T/2 we
have

A [u(E, v)exp[—p{log(|E+1)R1dE < u(0,T) it 2=0
En
or
A [u(E, exp(—uléf)dE<u(0,T) it 0<i<2
E'IL
for 7€[0, T/2], where y = u(7T/2,0). The assertion of the Lemma now
follows by integrating these expressions with respect to = on [0, T/2].
Our uniqueness theorem is an easy consequence of Lemma 3. Since u,

and wu, are non-negative regular solutions of LZu = 0 in § each of them
must satisfy the growth condition (10) or (11). Let v = u,— u,. Then »
'is a regular solution of the Cauchy problem Lo =0 in 8, »(x,0) =0
for all 2« E". Moreover, |v| < u,+ %, implies that v also satisfies the growth
condition (10) or (11). It follows from Theorem AB2 that » =0 in
E*x[0,T/2]. The proof of the Theorem is now completed by applying
the same argument in the strip E" x[T/2, T].

APPENDIX

We shall now prove the assertions of Theorems B and AB2 for 1 = 0.
We shall also indicate how the results of paper [3] can be sharpened in
the case 4 = 0.

1. Proof of Theorem B. For arbitrary o >0 and p >0 consider
the function

w(x, 1) = u(x, t)4Mexp[26” {klog (r2+ 1)+ 1}2— {klog (o +1)-+1}2],
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where r = |z|. It is clear that w(x,{) >0 for (x,?)e{02x[0,T]} v
v {2x(t=0)} and for (z,t)e{2x[0,T]} ~ {(|z| = g)><[0 T1}. On the
other hand, it is easily verified that if te(0,1/8] we have

LW < "W {klog (r2+ 1)+ 1}2(H—28),

where W = exp [Zeﬁt{klog(r‘é’—l—l)—l—l}z] and F is a positive constant
which depends only on A, B, C, k and n. Thus if we set § = K it follows
that Lw<<0 in 2x(0,1/8]. Now let (&,7) be any fixed point in
2x(0,1/p] and assume that o > |&|. By the weak maximum principle
applied to w in {2 x(0,1/8]} ~ {(|z] < e) X (0, 1/1}, w(&, ) = 0. There-
fore if we let o - |+ oo we obtain (&, )> 0 in the strip Qx[0,1/8].
The proof of Theorem B for ¢ > 1/ can now be carried out in the stand-
ard manner.

2. Proof of Theorem AB2. Theorem AB2 is consequence of the
following result which is proved in [2]. We consider the operator

(12) Lu = {Ag(®, 1) Wnge,— (i@, Oyt A (@, ) u—1

for (w,t)eS. Let S; = E"x(0, 0] and 8; = E"x[0, 8] for any (0, T].

THEOREM AB2*. Let w be such that Lu =0 in S and u(x,0) = 0
and let 0 be a fixed number in (0, T]. If there exists a function ¢ = ¢(x, 1)
such that ¢eC*(S,), ¢ >0 in every compact subset of Sy,

(13) Frop = dy(2, t)‘pri.rj‘l“‘/li(m; t)‘P:ci‘l"A(m, Det+e<0

in S, and

(14) [ [lul{max Y [Aygq) +p(max|dy| + max|4i))} dwdt < oo
Ss 4 i 1,7 i

then w = 0 in S.

In view of (1) for A = 0 it is clear that we can write L in the form
(12) where Aiiﬂiﬂj> 0 and

|4yl < My(Jo*+1), |4 < Mo(lo2+1)"7, A< M,
for some positive constants M, Mz, M. Set

oo 1) = exp| ;= (log(laf= 1)+ 21

for (z,t)eE"x[0,1/28], where k = k,+1 and p >0 is a constant to
be specified below. It is eagily verified that

Lo < - {klog (|| +1)+2}2(E—p),

(1— ﬁt
where F is a positive constant which depends only on M,, M,, M,, k
and n. Thus, if we set f# = 2K, condition (13) is satisfied in £" < [0, 1/28].
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To prove Theorem AB2 we must show that
(15) [ [ lulexp[— {kolog (|24 1)+ 1}2]dudt < oo
S
implies that (14) is satisfied. It is not difficult to show that
max 2 |+ (max| 4| +max|Ai) < (ol +1) Fo,

where F is a constant which depends only on M,, M,, k and n. Since
0<t<1/2p and k = k,+1, we have

¢ < exp[—{klog(|z[*+1)+2}*] < ([2[*+ 1)~ exp [ — {kolog(|z|*+ 1)+ 1}*]

and hence condition (14) is a consequence of (15).

Theorem AB2 corresponds to Theorem 1 of [2]. By an argument
similar to the one given above Theorems 3 and 4 of [2] can also be
sharpened in the case 2= 0. We omit the details.

3. Remarks concerning paper [3]. In paper [3] we prove the
existence of a fundamental solution I'(x,t; &,7) of the equation
Zu = 0, where

Lu = w—{ay (@, 1) ug, -+ a;(x, t)u}xj— b;(x, t)um?_—c(m, Hu.
We assume that the coefficients of % satisfy
v|B12 < @y (@, 1) By < Ky (Jo]2 1) D)2

and

|00, s lail s 103] < Ba(ll2 1), ay5, 6= by s < Ka(l224+1)".

In particular, we prove that for arbitrary a > 0 there exists a 7, > 0
such that

I'(z, 15 &, 1) = yal®, t; &, T)exp{ga(®, t) —ga(&, 7)}

.

for all #, £e K" and 0 < v < ¢t < T,, where y, is the fundamental solution
of an equation related to ZLu = 0,

[ valw, 85 &, 7)@E <1 for all (z,1)eE"X (3, T4]
E'H,
and ¢, is a function which satisfies

(16) 0" = ky (|02 + 1) 2V o g2+ (24 0) Ky (|22 + 1) |V 294l +
+k3(['x|2+1)l/2+ |a’i7’gamixj-|_gat< 0

for all (z,t)e K" x[0, T,]. For proving the existence of the fundamental
solution /" it makes no difference how ¢, is chosen as long as (16) is
satisfied. In paper [3] we also apply the fundamental solution to derive
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a representation formula for the solution of the Cauchy problem for Z.
In this application the choice of g, is important since it determines the
admissible growth classes for the data. For the case 2 = 0 in [3] we
used the function

(le]*+1)°

ga(®, 1) = log T—W’

where f(a) > 0 is a function of « which is determined so that (16) holds.
With this choice of g, we were able to solve the Cauchy problem for data
which grows no faster than const(|z|2+1)%.

We observe that the function

ale, 1) = 1—}/# {alog(lef2+1)+ 1}

is a Dbetter choice for g,. Indeed, if te[0, 1/2] we have

o < (log (a4 1) 1y
(1—fuye

where £ is a positive constant which depends only on a, k,, ky, ks and n.
Thus if we take f(a) = 2K and T, = 1/28, then (16) holds. With this
choice of g, the representation formula for the solution of the Cauchy
problem given in Theorem IIT of [3] is valid in the case 1 = 0 for data
which grows no faster than

(B—p),

const exp {alog(|x|2+ 1)+ 1}2.

Note. The first author’s contribution to this work was supported
in part by a grant from the U.S. Air Force Office of Scientific Research.
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