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In the proof by the method of successive approximations of the
theorem on the existence of a solution of the differential equation

¥ =f(z,y),
where ¥y = (y;, ..., ¥») and f = (fy, ..., fa), it is necessary to distinguish
two different cases.
1° If the function f satisfies the Lipschitz condition with a certain
constant N in the whole space, then the proof is almost automatical.

2° In the case where the function f is defined only in a certain closed
set Z, the proof of the local existence theorem involves some slight but
troublesome complications.

One way of reducing case 2° to case 1° is to extend the function f
from the set Z to the whole space in such a way that the Lipschitz con-
dition be satisfied. Such continuation of the function f may be achieved
in various ways. If the set Z is the Cartesian product of a segment
and a convex set W, then the function f may be extended in a rather
simple manner to the whole space. The subsequent construction seems
to be of interest, because it may be applied also in case of a Hilbert space.

The principal step is the definition of a contraction 7' which maps
the whole space H onto a convex and closed set W (see Theorem 1).

The present paper is an answer to the problem set by T. Wazewski.

1. Let W be a convex closed set and let W < H, where H is a Hil-
bert space. For an arbitrary point PeH there exists (1) precisely one
point @ W such that

(1) (P, W) =7r(P,Q)(%.

(') See e.g. N. Bourbaki, Espaces vectoriels topologiques, Paris 1955.
(%) »(P, W) and r(P, @) are distances of the point P from the set W and from
the point @) respectively, and

(P, Q) = @—P, Q—P) = Q= Pj°.
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We define the transformation 7' by setting
T(P) = Q.

S}

This transformation 7' has the following properties:

1° T'(P) =P if P<W;

2° T(P)eW for PeH;

3° v(P, W) =r(P, T(P)) for PeH;
4° for arbitrary A, BeH

r(4, [T(4), T(B)]) = (4, T(4)),

where [T(A), T(B)] is the closed segment joining T(A) and T(B).
Properties 1°-3° follow from the definition of the transformation 7.
Therefore, let us prove property 4°.
In view of the convexity of the set W, we have

T(A)e[T(A), T(B)] =« W,
whence
r(d, W)y<r(d,[T(4), T(B)]) <r(4, T(4)).
Hence property 4° follows.
FUNDAMENTAL THEOREM. Transformation T 4is a contraction, i.e.

(3) r(T(4), T(B)) <r(4, B)

for arbitrary points A, BeH .

Proof. First let us prove for scalar products two following inequal-
ities:

(4) Re(T(B)—T(4), A—T(4)) <0,

(5) Re(T(A)—T(B), B—T(B))<0.
Writing

(6) P(o) = T(A)+o(T(B)—T(4)),

where p is a real parameter and 0 < p <1, we can get for property 4°
the form

(7) A—T(4)]*< |4 —P(o)|?
for 0 <p<1.
Substituting (6) in (7) we obtain

IA—T(A)P < | A—(T(4) = o(T(B)— T (4))|
= |A—T(4)[*—20Re(4 —T(A), T(B)—T(4))+
+ T (B)— T ().
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Hence
20Re(4d—T(4), T(B)—T(4)) < *|IT(B)— T(4)|*.

Dividing by o (under the assumption that p # 0, ie. 0 < p<1)
and letting it tend to 0 (p — 0-4), we obtain inequality (4). Inequality
(5) follows from (4) by interchanging 4 and B.

Let us now introduce the auxiliary points

A*(g) = T(A)+o(A—T(A4)), B*(o) =T(B)+o(B—T(B)
for 0 < p <1 and the function
h(eg) = [[B*(g)— A* (o).
From the definition of A*(p) and B*(p) we have
(8) h(0) = |T(B)—T(A)*, (1) = [B—Al?.

To prove the theorem it suffices to show that 2(0) < h(1).
Computing the derivatives h'(p¢) and h''(¢) we infer that

I (0) = 2Re(B*(0)— A*(0), {(B—T(B))— (A —T(A))}),
B (p) = 2|B—T(B)—(4—T(4))|} = const > 0.
It follows that h'(g) is non-decreasing. In view of (4) and (5) we see
that »'(0) = 0, hence
W(o)=0 for 0<p<1.

This implies that the function h(g) is non-decreasing. Therefore
1(0) < h(1) which means that (in view of (8)) inequality (3) holds.

2. Let the function ¢(P) be defined in the convex and closed set
W < H and nowhere else. By means of the function ¢ we define the new
funetion ¢* by putting
p*(A) = @[T(A)] for AeH.

From 1° it follows that for an arbitrary point BeW we have ¢*(B) =
= @(B); therefore the function ¢* is a continuation of the function ¢
to the whole space H.

From the above definition of the function ¢* it results that 1° the
sets of values of functions ¢ and ¢* ase identical; 2° if the function ¢
satisfies in W condition

(S8)  for arbitrary points B,, B,eW we have
|7(By) — ¢ (By)| < 2(r(By, By)),

where the function Q(#) is non-negative and non-decreasing for
te[0, +o0),
then the function ¢* will also fulfil this condition in H.

Colloquium Mathematicum, t. XVIII 10



146 S. BRZYCHCZY

Indeed, in view of the Fundamental Theorem we have the rela-
tion

[P (Ay) —¢*(4y)] = | [T(A4)]—@[T(4,)]
< Qr(T(4y), T(4,))) < Qr(4,, 4,))

for arbitrary points A,, A,eH.

Assuming in particular that Q(¢) = Nt*, where N >0 and a >0,
we obtain from condition (S) the Holder condition.

3. If the function y(P,,...,P,) is defined only for P;eW; c H;
(¢=1,...,n), where W; (¢ =1,...,n) are convex and closed sets con-
tained in Hilbert spaces H; (i = 1,...,7n) respectively, then the func-
tion ¢ may be extended to the whole space H,x...xH, (or to the set
Wix...XxWoxHg ; X...XxH,, 1<s<m—1) in such a way that certain
properties (analogous to those of the function ¢) be preserved.

For that purpose we define the transformation 7; (i =1,...,n)
in each space H; separately analagously to (1) so that

Ti(H)=W; (i=1,...,n).
The function
p*(Ayy ..y 4p) = "P(Tl(Al)7 ) —T'n(An)),

where (A, ..., Ap)eH X... X Hy (O (Ay,y ..oy Agy Agiqy.eny Ap)eW, X .. X
X WeXHg yX...x Hg) is the required continuation of the function P
to the whole space H,x...xH, (or to the set WiXeoe X WeX Hgyy X
X...XHp).

The author wishes to express sincere thanks to Professor T. Wa-
zewski for his valuable advices.
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