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Let a real function f = f(f), defined on the interval [—1,1] and
absolutely continuous there, satisfy the boundary conditions

(1) f(=1) =f(1) = 0.

We shall denote the class of all such functions by @. Consider the
inequality

2) L' < [p°f,
1
where [ denotes [dt,p = (L—#)"'?, fe®, f = df/dt and a, b and A are
=1

some consgtants. Assume that inequality (2) holds true for any fe® (as,
e.g., for 2 = 0). We are interested, for given « and b, in the best possible
value of 1 in (2). Such 1 will be denoted by 4(a,bd).

The values of A(a,b) are well known in cases ¢ =b =0, a = 0,
b =2 (see [1], Theorems 257 and 262) and a =0, b = 4 ([2], formula
1,12). If conditions (1) are replaced either by the condition [f = 0 or
by the conditions [f =0 and f(—1) = f(1), then the corresponding
best values of 1 in (2) are also known for a number of pairs a and b (see
[1], Theorems 225 and 258, [2], Theorem 1.3*). The inequalities like
(2) with a = 0 but arbitrary function p({) have been derived in [2].

The inequalities of the form (2) are useful, among others, in some
problems of approximation for ordinary differential equations (see [3]
and [4]). In the note [5], the second author was forced to congider in-
equality (2) for ¢ =1 and b =5 and he established there that 1/0.571 <
< A(1,5). Looking for the exact value of A(1,5), which is 1/2, we have
congidered more general cases b = a4 and b = a+ 2.

THEOREM. For any fe® and a > —1, the following inequality holds
true:

(3) (14a) [p“*f* < [ 9%
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There is equality in (3) only if either a >0 and f = const (1— ¢*)(*+®/?
or a <0 and f = 0 besides the trivial case when the integrals in (3) become
infinite.

We also have, for any fe® and a > —2, the inequality
(4) (24a) [p*°f < [p°F.

There is equality in (4) only if f = const(1— )"+ besides the trivial
case as above.

From this theorem we easily deduce the following

CorOLLARY. We have A(a,a+4) =1+4a for a >0 and A(a,a4)
=Z1+a for —1<a<0. We also have A(a,a+2) = a+2 for a > —2.

In the proof of the Theorem the method of integral identities will
be used (see [6], Ch. V, §13).
We can assume, without loss of generality, that

(5) [p°fP< oo and a> —2.
We shall prove that this assumption implies the relations
(6) p**iff -0 for t— +1.
To do this, note that due to the boundary condition f(1) = 0 we have

1 il 1
P =([1)< [vF [p,
i i ;
and, moreover,

1
[p o< 2(a+2)"p7 %),
4

if only @ > —2 and t> 1/2. Hence, in view of (5), we obtain p®*2f* - 0
for t - 1. A similar procedure applies also to the case ¢ - —1.
To get a suitable integral identity, let us put

(7) F =p*f—p°f and f=p°h,

where a, b, ¢ and 1 are constants and & = h(t) is a new function. Expres-
sing F in terms of h, we get

F = p**+*h*+ 20hh 4 wh?,

where v = ctp “"**? and w = A p T — 21p"t*. We demand now that
v = w. It will be so only if the constants a, b, ¢, 2 are connected either
by the relations

(8) b=a+4, e¢=—1—a, A=1+a
or by the relations
(9) b=a+2, ¢=—2—a, i=2%a.
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There is one case more for which ¥ = w, namely A = ¢ = 0 and a, b
arbitrary. However, this last case does not give rise to any interesting
identity.

We get, for both cases (8) and (9), the formula

(10) F = p™t h2 - d)dt (ctp®t*f?).

In view of (5), (6), (7) and (10) we obtain the desired integral iden-
tity
(11) fpafg_ﬁfpbfz _ fp2c+ah2’

in which the right-hand member is, evidently, non-negative. Taking
into account (8) and (9) resp., we get from (11) inequalities (3) and (4)
resp. :

Now the equality in (3) and in (4) may occur only if » = € = const,
which gives

(12) f=0p,

and condition (5) for this f takes the form [ p*™*** < co. This last
condition is satisfied for every C if

(13) 2c+a+2<0.
If, however, 2¢-+a-+ 2 > 0, then ¢ must be zero.
Consider separately the cases ¢ = —2—a,a > —2,and ¢ = —1—a,

a > —1. In the first case the restriction (13) is satisfied, hence, for a > —2,
all functions (12), which take the form Cp"'*9”*  realize the equality in
(4). In the second case the restriction (13) is satisfied only for a > 0.
Hence, for a > 0, all functions (12), which are in this case of the form
Op'+*?, turn (3) into equality. For —1 < a < 0, (13) is not satisfied,
hence f = 0:p° = 0. This completes the proof of the theorem.

Remark. Inequalities (3) and (4) are valid under a little milder
assumptions. It suffices to suppose that

(i) the function f is absolutely continuous in every closed sub-
interval of the open interval (—1,1);

(ii) both limits lim f(¢) and lim f(¢) are equal to zero if they exist.

t—-+1 t—>—1

It is easily.seen{tha,t (i) and (5) imply both the existence of

lim f(¢) and of Lim f(¢).

t—+1 t>—1

Let us return to A(a, b). Note that the inequality

by +b,
2

(14) l(“,bl)l(“’bz)gﬂ(a’
holds true. In fact, we have

Aa, b)Ma, by [pf [pP< ([ 2°F),
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whence, by Schwarz inequality, we get
A, by Aa, b) ([ p2 P < (9

from which (14) follows at once.

Apply inequality (14) to the particular case ¢ = 0, b, = 0, b, = 2.
Taking into account the known values A(0, 0) = (= /2)® and A(0,2) = 2,
we get the estimate (0, 1) > =/y2. On the other hand, we have for the
function f = 1— 2 the equality ffz/fpf2 = 647 /9, hence 4(0, 1) < 64x/9.
So we get 2.22 < 1(0, 1) < 2.27, a result which is useful in estimating
some integrals.
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