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1. Let us denote by absC the class of real functions of a real variable ¢
which are defined and absolutely continuous on the open interval I = (a, §),
a < B, bounded or not (}). Let us put v = pee~' and ¢ = —(pp)p~?,
where functions p and ¢ belong to the class abs C and satisfy the conditions:
p>0,9>0and ¢ = dp/dte absC. By H we mean the class of functions
he absC -satisfying the integral conditions (2)

(1.1) [a?dt> —oco, [phtdt< oo
I I

and the limit conditions

(1.2) liminfoh? < co, limsupoh®> —oc.
t—>a t—B

THEOREM 1. For every function he H both limits in (1.2) are proper
and finite. Moreover, the equality
(1.3) [pitar = [qh*dt+. [ py*f*dt-+1limoh® —limok?
I I I t—>8 t—a
holds, where f = hop™'. ‘
Proof. It is easy to check that the identity

(%) ph? = gh* + pe*f? + (vh?)’

is valid a. e. in the interval I. It follows from the assumptions that func-
tions ph* and gh® are summable in every interval (a, b>, where a < a < b < B.
It follows further that vh®e absC. Thus the function (vh®) is summable

(!) A function g: I-R is absolutely continuous on an open interval I if it is
absolutely eontinuous on every closed interval <{a, b) < I.
(3) A measurable function g: IR is integrable in an interval I if at least one
of the integrals [g+dt and [g—dt is finite, where g+ = max(g, 0) and ¢~ =
1 I

= max (—g¢, 0). If both integrals are finite, then we say that the function ¢ is sum-
mable in the interval I.
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in the interval {a, b). Hence, by (%), also the function ptp2f2 is summable

in {a,b> and we have
b

b b
(%%) [ picdt = [ gh*dt+ [ po*fide+on? (..
a a a

Now, by conditions (1.2), there exist two sequences {a,} and {b,}

such that e<a, <b, <8, a,—~a, b,—p, and
limohl,, =4 < 0o, lim(—ok?)],, =B < oo.

A priori the cases A = — o0 and B = —oo are not excluded. In
any case the sequence —-vhzl,’;z is bounded from above by some finite
constant C. Hence by (**) we have the bound

bp 8
[ grat< [ piras+c,
an a
because p > 0. From conditions (1.1) we conclude now that the func-
tion ¢gh? is summable in the entire interval I.

In a similar way we prove that the function pe?f? is summable in I.
Hence all integrals in (*x) have finite limits as @ —a or b —g. This con-
cludes the proof of Theorem 1 (cf. [12]).

With appropriate additional assumptions equality (1.3) represents
the Weierstrass identity for a variational problem of Sturm and Liou-
ville for a “field” of functions b = fp, where the function ¢ satisfies the
equation (pp)+qe =0 and some appropriate boundary conditions
(see [5] and [8]). Observing the equality

[pe*f2ar = [ (ph—vhyp~at,

I b{
we notice that (1.3) may be treated as a modification of Beesack’s identity
(see [1]). We emphasize that the function ¢ need not belong to the

class H.

Remark 1. The function ¢ belongs to the class H if and only if the
Jollowing two conditions are satisfied:

(i) [pp*dt < oo,
I

(ii) f glpPdt < oo.
I

Condition (ii) may be substituted by the comjunction of another two
conditions :

(iii) f g pdt < oo,
I

(iv)  there ewist finite limits of the expression popyp as t—a and t—p.
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In fact, let us assume that ge H. Hence condition (i) is satisfied.
Condition (ii) is obtained directly from Theorem 1, where we have proved

that the function gh® is summable in the interval I provided he H. Further,
condition (iii) follows from condition (ii). Using the identity

b b
popls = [ perdi— [ gp*at,
a a

where a < a < b < f, we prove that conditions (i) and (ii) imply condi-
tion (iv). Finally, by the definition of the class ﬁ, the conjunction of
conditions (i), (iii) and (iv) implies pe H.

Let us notice that in the often appearing case of ¢ > 0 condition (iii)
is trivially satisfied.

THEOREM 2. For every function he H the following inequality is valid:

(1.4) limoh? —limok® < [ (ph? —gqh?)dt.
' t—p {t—a I

If<p¢f1 and h # 0, then (1.4) i8 a strict inequality. If pe ﬁ, then (1.4)
becomes equality only in the case of h = const-¢.

Proof. Inequality (1.4) follows from (1.3), because p > 0. If it becomes
equality for some non-vanishing function he H , then from (1.3) we have
(hg~'y = 0(a.e.), because pp2>0. But hp~'eabsC, hence h = cp,
where ¢ = const = 0. It implies that ¢e H. Now it is easy to complete
the proof (cf. [4] and [12]).

As an example of an application of Theorems 1 and 2 let us assume
I = (0, ), p =1 and ¢ = exp(—A4t), where 1 is an arbitrary positive

constant. Then » = —41 and ¢ = —A* We shall prove that the class H
consists here of those functions ke absC which satisfy the conditions

[o ] o0
(1.5) [ Wat< o, [ Bdt< oo
1] 0

The necessity of (1.5) follows directly from (1.1). To prove that (1.5)
1s sufficient it remains to show that (1.5) implies (1.2). Since, in

our case, we have vh* = —ih® < 0, the first condition of (1.2) is surely

satisfied. If the second condition of (1.2) were not satisfied, we would

have limovh? = —oo, i. e. limh®? = oco; a contradiction with the first
t—B t—o00

condition of (1.5). Hence in the considered case conditions (1.5) represent

a characterization of the class H.
Let a function he abs(C satisfy (1.5). From Theorem 1 it follows that
the limits of the function %* as ¢ —0 and ¢ — oo exist and are finite. By the
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first condition of (1.5) we must have limh® = 0. We also get

t—o00
limh? = (limh),
t—0 t—0

because the function A is continuous for ¢t > 0.
Using Theorem 2 and Remark 1 we infer that

If a function he absC satisfies (1.5), then there exists a limit value
h(0) =limh and the inequality

t—0

(1.6) R0)<i [ Wdt+i* [ Rdt
0 ’ 0

holds for every real number A, 0 < A < oo. Inequality (1.6) becomes equality
if and only if h = const-exp( —At).

Finally, assume that A = 0 and take the minimal value of the right-
hand side of inequality (1.6) with respect to 4. To this aim we put

A = 4, > 0, where
7= fw i) fwhzdt)_l.
In this way we obtain a;:l “Optim;l” bound
(1.7) h2(0)<2( fwh2dt)l/2(fh2dt)1’2
;

(see [8], Theorem 263, and [4]). It becomes equality if and only if we
put k = const-exp(—4,t), which does not impose any additional con-
ditions with respect to 1, besides 0 < A, < oo. In fact, after using the
-expression for A, the equation for 1, becomes an identity.

We apply in the sequel the above technique of optimization for some
inequalities containing a parameter.

2. Let H be the class of functions ke absC satisfying integral con-
ditions (1.1) and limit conditions

(2.1) liminfoh® < 0, limsupoh®> 0.

t—>a t—>p

Obviously, H < H. By Theorem 1, conditions (2.1) may be written
equivalently in the form

(2.1) ’ limoh* < 0, limoh?>0.

t—a i—p

THEOREM 3. For every function he H the inequality

(2.2) [qprar< [pi*at
I I
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holds. If h # 0, then inequality (2.2) becomes equality if and only if he™!
= const # 0, where the additional conditions

(2.3) geH, limppp = limppy = 0

t—a t—p
must be satisfied (see Remark 1).

Proof. By virtue of limit conditions (2.1’) inequality (2.2) follows
from inequality (1.4). If both sides of inequality (2.2) are equal for some
non-vanishing function he H, then by (1.4) and (2.1’) we have

limvh? = limvh® = 0.
t—>a t—p

Applying Theorem 2 once again, we get e H and h = cp, where
¢ = const # 0. This proves the validity of (2.3), because vp* = pge.
The theorem now follows easily.

We shall call inequalities of the form (2.2), which do not contain
explicitly the limit conditions, the inequalities of Sturm-Liouville type.
Let us notice that the condition g€ H is not sufficient for inequality (2.2)
to become equality. If ¢ > 0, then conditions (2.3) can be replaced
by the following system of conditions (see Remark 1):

(2.4) [pprdt < 0o, limpgy = limpgy = 0.
I t—a ‘-—bﬂ

As an example of an application of Theorem 3 take I = (0, oo),
p =1 and ¢ = exp(—At*/2), where A is an arbitrary positive constant.
In such a case v = —At and ¢ = A —A*t®. We shall prove that the class
H consists here of those functions ke absC which satisfy the conditions

(2.5) [ ertat < oo, [ Rdt< oco.
0 (]

Necessity. Let he H. As shown in the proof of Theorem 1, the
function gh® is summable in the interval I. Thus we have

f IA— 22| h?dt < oo.
0

After excluding the interval 4 = {: 2/34 < t* < 2/A} from (0, o)
we obtain
t*h*dt < oo,
(0,00)— 4
because |A—A%t*| > A*1?/2 for te (0, co) —A. Since the function ¢*hA* is
bounded in the interval 4,

ft’h2dt < oo.
pi |



132 B. FLORKIEWICZ AND A. RYBARSKI

Thus the first condition of (2.5) has been checked and the second
condition of (2.5) follows directly from that of (1.1).

Sufficiency. If a function he absC satisfies conditions (2.5), then
it ~atisfies the second condition of (1.1) and also the first condition

of (2.1), because vh® = —Ath* < 0 for ¢t > 0. We find further
[awa = [ (@#¢—nwa<r [ era<r [ era,
1 £ . i 0

where t, = A~'2, which by (2.5) assures that the first condition of (1.1)
is fulfilled. It remains to consider the second condition of (2.1). If a func-
tion A did not satisfy the second condition of (1.2), then we would have

limoh? = —oo, i.e. limth’.= oo,
t—p t—o00

which is a contradiction with the first condition of (2.5). Surely, we have
he H. Hence, by Theorem 1, there exists a finite limit limvh? i. e. limth?,

t—p . {—00
and by the first condition of (2.5) it must be lim¢h* = 0. In other words,
t—>o00
we get limoh* = 0 and so also the second condition of (2.1) is valid. Thus

i+8
we have shown that conditions (2.5) are a characterization of the class H.

It is easy to see that H = H in our case.
Now, applying Theorem 3 we infer that
If a function he absC satisfies conditions (2.5), then the inequality

(2.6) fh"’dt<).f t?h?dtH—If h2dt
0 0 0
is valid for every real number 4, 0 < A < oco. Inequality (2.6) becomes equality
if and only if h = const-exp(— At*/2).
Applying the described optimization to (2.6) with respect to i we
obtain the bound

(2.7) (f h2dt)2 < 4}°t2h2dt- johzdt,
0 0 0

which becomes equality if and only if & = const-exp( — At*/2).

Clearly, (2.7) represents the well-known Weyl inequality (see [4],
[8], Theorem 226, and [11]). With the additional condition k(0) =0
(i. e., limh = 0) Weyl’s inequality may be improved to the form

t—0

(2.8) (f i)' < %—ftzhzdt- fhzdt,
[} 0 0

which becomes equality (finite) if and only if A = const-texp(— At?/2),
0 <A< oo. To get result (2.8) one may take the interval I = (0, o0),
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p =1 and ¢ =texp(—At*/2) and proceed as in the second example
above. The only difference is that the validity of the first condition
of (2.1) requires limovh* = 0 to be proved, because otherwise we would

t—>a

have v = t~! —At, hence » > 0 in a right neighbourhood of the point 0.
However, the equality lim¢~'h* = 0 follows directly from A(0) = 0 and
from the estimation >°

4
R < tfizzdt.
0

The examples above show that the determination of the (las:es H and
H for some non-trivial applications of Theorems 2 and 3 may L:e troublesome.
However, in paper [3] various groups of assumptions ass ring the relation
he H are described. In the sequel we discuss the problem more closely.
3. At first we prove
LEMMA 1. Let a given function he abs C satisfy the condition | piﬁ dt < oo.
1

If the integral f p~'dt is convergent at a point a (3) (resp. at a point ), then
I

there exists a finite limit value h(a) = limh (resp. h(f) = limh).

t—a t—p

Proof. Using the Schwarz inequality we obtain the estimation

b b

b
(3.1) [h(b) —h(a)]? = (fhdt)2 < [p~lar- [pitat,

a a

where a <a <b < g. Lemma 1 follows now from the Cauchy condition
for the existence of the limit.

As we have already said, the inequality ¢ > 0 assures that the first
condition of (1.1) is valid for an arbitrary measurable function h: I—R.
We shall assume that ¢ > 0 (a. e.) and prove

LEMMA 2. (i) The function v is decreasing. in the interval I, and so
the limit values v(a) = limv and v(8) = limv exist, finite or not; moreover,
v(a) > v(B). f=a i-~p

(ii) If v(a) # O (resp. v(B) # 0), then the integral fp“dt i8 convergent
at a point a (resp. at a point B) and o

t
'vfp“‘dt =0(1) a8 t—a

B
(resp. of p~'dt = O(1) as t —B).
i

(3) The inAtegral J gadt is convergent at a point tye I if the function g is summable
I

in some neighbourhood of ¢,.
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Proof. First notice that » belongs to the class absC and it satisfies
the Ricatti equation
(3.2) v+p P 4+q =0
(cf. [1], [2] and [4]). Thus we have —o > ¢. Integrating, we find

b
v(a)—v(b) > fth >0

for a < a < b<p, because ¢ > 0 (a. e.) which proves (i). To prove (ii),
consider a neighbourhood of a in which » s 0. By (3.2) and ¢ >0 we
have the estimation

t t
(3.3) frplat< — [v7%dt = 07! (1) —v7 (a)

for a < a<t< p in that neighbourhood of a. Hence it follows imme-
diately that

fp"ldt < o0,

because v(a) # 0. If v(a) # oo, then the second part of (ii) is evident.
And if v(a) = oo, then by (3.3) we have

t
[prat<o~'(t)
and therefore
t
vfp“’dt <1,

which completes the proof.
We denote by H, (resp. H®) the class of functions he absC satisfying
the integral condition
f pizzdt < o0
1
and the limit condition
limh =0 (resp. limh = 0).
t—a -8
LEMMA 3. (i) If v(f) > 0, then H < H,.
(ii) If v(a) <0, then H = H".
(iii) If v(a) > 0 and v(B) < 0, then H « HynH".
Proof. We shall prove only (i). To this end we take he H and v(f) = 0.
Then v(a) > 0 and the integral f p~'dt must be convergent at a point a by
i
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Lemma 2. Further, by Lemma 1, there exists a finite limit value h(a)
= limh. Let us suppose that h(a) # 0. Hence

t—>a
limvh® = v(a)h?(a) > 0,
t—a
which contradicts the first condition of (2.1'). Thus k(a) = 0 and he H,,
which completes the proof.

We assume the following terminology:
a boundary point a (resp. ) of the interval I is free if v(a) < 0 (resp.
v(B) = 0);
a boundary point a (resp. ) of the interval I is fized if v(a) > 0
(resp. v(f) < 0).
THEOREM 4. The following statements are valid under the assumption
q>0 (a.e):
(i) If the point a is fixed and the point f is free, then H = H,.
(ii) If the point a is free and the point B is fixed, then H = H°.
(iii) If both points a, B are fized, then H = H,NnH".
Proof. We prove only (i). By means of Lemma 3 it is sufficient
to show that H,c H. By Lemma 2(i) there is » > 0, because v(g8) = 0,
and so the second condition of (2.1) is surely satisfied. Further, if v(a) > 0,
then we use the estimation
¢ t
0 < oL vfp"‘dt-fph’dt

which follows from estimation (3.1) for a >a and b =¢> a. As one

can see we have limvh® = 0 only if
t—a

¢
'vfp“dt =0(1) ast—a.

Hence, by Lemma 2 (ii), the first condition of (2.1) is satisfied. Thus
we may conclude that he H.

Let us notice that under assumption ¢ > 0 it follows from Lemma 2 (i)
that the two end-points of the interval I cannot be simultaneously free.
If v(a) > 0 and v(B) < 0, then there exists a point y ¢ I such that v(y) = 0.
By an appropriate partition of the interval I into two parts, part (iii)
of Theorem 4 may be reduced to parts (i) and (ii).

4. In this section we consider some special cases of Theorem 3.
We have throughout ¢ > 0 and so the class H is determined by Theorem 4.
The results are given in Table 1. To every row with a number n there
corresponds, according to Theorem 3, some Sturm-Liouville type ine-
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quality which we shall call “the inequality »”. In the column “=" we
have marked by + (or —) if conditions (2.4) are (or are not) satisfied.
The last column contains references.

Inequalities 1, 2, 3 and 4. It is easy to see that inequalities 1 and 3
are equivalent to each other and equivalent to Wirtinger’s inequality.
Inequality 3 is sometimes called first Steklov’s inequality. Inequalities 2
and 4 are generalizations of inequalities 1 and 3.

Inequalities 5, 6, 7 and 8. Inequalities 5 and 6 are two equivalent
forms of the known Hardy’s integral inequality. Inequalities 7 and 8
are its trivial generalizations.

Putting I = (0, o), p = 1 and ¢ = t"*exp(—At) and using the same
method as in the example of Section 2 we obtain the optimal (with
respect to 1) bound of the form

(4.1) 4fh2dt—fmt2h2dt > Uoot“hzdt)z (fm Rrar)”
0 0 0 0

which is valid for every non-vanishing function he H,. Inequality (4.1)
represents a certain modification of Hardy’s inequality that states only
the positivity of its left-hand side. Clearly, using equality (1.3) one can
evaluate the value of this left-hand side but the derivative k that is not
present on the right-hand side of (4.1) has to be used.

Another type of a modification of Hardy’s inequality is obtained
in the case of I = (0, 8), where 0 < f < oo, p =1 and ¢ = t*, by means
of Theorem 2 and the optimization technique with respect to 4 (presented
in Section 2). After evaluation we get the bound

B 8 8
1 _ . 1/2 /2
(4.2) ~ R () + ft‘2h2dt <2 (f hﬁdt) (f t"zh"dt)l
ﬂ 0 0 0
which is valid for every function he H,, where h(8) = limh. The existence
t—p

of that limit follows from Lemma 1 in Section 3. One can show that ine-
quality (4.2) is a generalization of the inequality presented in [8], Theo-
rem 254 (cf. [12]).

Inequality 9. Simultaneously with that inequality one can consider
a “mirror” inequality which is obtained from inequality 9 by putting —¢
instead of t. Using both inequalities we get the following corollary:

For an arbitrary function h that is absolutely continuous in the interval
(—1, +1) and satisfies the condition

+1 .
f (1 —8)hdt < oo

-1
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the following inequality is valid:

+1 +1

(4.3) f[h—h(O)]%ltg% f (1 —12) k2 ds.

-1 -1

It becomes equality if and only if h = a-+bt for t >0 and h = a+ct
for t < 0, where a, b, ¢ are arbitrary constants.

Evidently we further obtain

+1

+1 +1
(4.4) f[h—h(O)]zdt> f tht—%(f hdt)z,

because the right-hand side of this inequality is a minimal value of the
+1

integral f (h —2)*dt with respect to A. Inequality (4.4) becomes equality
—1

if and only if
1
h(0) = — f hdt.
2

-1

From ineqilalities (4.3) and (4.4) we have the inequality

+1 +1 +1

(4.5) fhzd't—%(f hdt)zgé f (1—)h2de.

- -1 -

It becomes equality if and only if both inequalities (4.3) and (4.4)
are equalities which defines the form of the function A, namely it must be
h =a+bt for —1 <t< 41, where a and b are arbitrary constants.
In this way inequality 9 yields a known inequality ([8], Theorem 225).

Similarly, from inequality 1 we have the inequality

+m/2 +7/2 +7/2

(4.6) thdt—%(f hdt)2< j h?dt

—1t/2 —7/2 — /2

valid for every function h which is absolutely continuous in the interval
(—m/2, +=/2) and for which the integral on the right-hand side is finite.
Inequality (4.6) becomes equality if and only if h = a+bsint, where a
and b are arbitrary constants. Assuming moreover

+m/2
f hdt =0

—f2

we get from (4.6) the second Steklov inequality.
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Inequalities 10, 11, 12 and 13. They represent a complete system
of Sturm-Liouville type inequalities obtained by substitutions

p=01-1)7% ¢=0-0 ¢=2i1-1),

where a, #, ¥ and 4> 0 are constants. In certain problems of the non-
linear oscillation theory, inequality 11 for a = —} (see [13]) isx of
a great use. This was the reason for a closer study of this inequality with
additional assumption of orthogonality

+1
[ gphdt =0

-1
(see [7], [10]).
A similar complete system of inequalities may be obtained by more
general substitutions, namely

p=01-01+1% ¢=01-02+t, g¢=2i1-0"@1+

where a, b, k, I, a, # and A are constants. The constants should be chosen
in such a way that the equation (pg) +¢p = 0 be satisfied. It is easy
to show that with arbitrary values of the constants @ and b the constants k,
l and A exist only for a and g given in Table 2

TABLE 2

I I1 111

a |a—1|a—2 a |a—2|a—1|a—2

g |b—1[b—2|b—=2] b [b—2|b—1

Constants @ and b should satisfy the additional condition A > 0.

We omit the evaluation, noting only that case I covers ine-
qualities 10-13 with the assumption & = b (see [12]).

Inequality 14. This inequality was deduced in [1] for ¢ = 0 under
additional assumption h* = O(#*~°) as ¢t—oo. In the case of h(0) = 0,
which is of interest to us, this assumption is trivially satisfied (cf. [12]).

Evidently, convergence of the integral f h*dt implies h* = o(t) as t—oo
(see [8], Theorem 223).
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